
114 Computer

St
an

da
rd

s

I
f you were a programmer using float-
ing-point computations in the 1960s
and 1970s, you had to cope with a
wide variety of configurations, with
each computer supporting a differ-

ent range and accuracy for floating-point
numbers. While most of these differences
were merely annoying, some were very
serious. One computer, for example,
might have values that behaved as non-
zero for additions but behaved as zero
for division. Sometimes a programmer
had to multiply all values by 1.0 or exe-
cute a statement such as X = (X + X) − X
to make a program work reliably. These
factors made it extremely difficult to
write portable and reliable numerical
computations.

In 1976, Intel began to plan for a float-
ing-point coprocessor for the Intel
i8086/8 and i432 microprocessors. John
Palmer convinced Intel that they needed
to develop a thorough standard to spec-
ify the arithmetic operations for their
coprocessor so that all Intel processors
would produce the same results. Because
William Kahan had extensive experience
with the IBM, Cray, and Control Data
Corp. (CDC) floating point, he was one
of the few who understood the challenges
of writing accurate numerical code. In
1976, Kahan’s influence on floating-
point processing escalated when Intel

hired him as a consultant to help design
the arithmetic for the 8087 processor.

As a result, he had a hand in the birth
of the IEEE 754 specification for float-
ing-point computations.

—Charles Severance

THE BEGINNING
Charles Severance: When Intel hired

you as a consultant in 1976, what did
they want you to do?

William Kahan: The folks at Intel
decided that they wanted really good
arithmetic. The DEC VAX was really not
that bad, so my reasoning went: Why not
copy the VAX? Intel wanted the best
arithmetic, so Palmer and I got together
to think about what the best arithmetic
should be. One of the things Palmer told
me was that Intel anticipated selling these
coprocessors in very large numbers. The
best arithmetic was what was best for a
large market, which subsequently started
to frighten Silicon Valley because of

rumors that Intel was building floating
point on a single chip, the i8087. And
when they heard rumors of what was
going to be on that chip, they were
aghast.

CS: Out of this thinking grew IEEE
754?

WK: People have said from time to
time (as a joke) that the other Silicon
Valley companies got worried and joined
the IEEE 754 working group. I realized at
this first meeting that the members of the
committee were very serious. CDC did-
n’t bother to attend that meeting in
November 1977 because it was a micro-
processor committee—they had no idea
that microprocessors would mean any-
thing at all. Cray felt the same way. IBM
was only there in an observer capacity—
they knew microprocessors were coming
but they couldn’t say much.

CS: What were the meetings like?
WK: One of my friends said that

attending one of these meetings was like
a visit to the Grand Canyon: just awe-
some. In the usual standards meeting
everybody wants to grandfather in his
own product. I think that it is nice to
have at least one example—and the float-
ing-point standard is one—where sleaze
did not triumph. Cray, CDC, and IBM
could have weighed in, if they wanted to,
and destroyed the whole thing. But CDC
and Cray must have thought, “Micro-
processors. Why worry?”

CS: What happened next?
WK: After the first meeting, I went

back to Intel and asked to participate in
the standards effort. Then Gerome
Kunan, Harold Stone, and I prepared a
draft document of the Intel specification
in the format of an IEEE standard and
brought it back to an IEEE 754 meeting.

CS: Were there any complications?
WK: I got Palmer’s verbal permission

to disclose the specifications for the non-
transcendental functions on the chip, but
not the specifications for the architecture.
I could describe the precision, exponent
ranges, special values, and storage for-
mats. I could also disclose some of the
reasoning behind the decisions. We did-
n’t say a word about the i8087’s tran-
scendental functions—I had to bite my
tongue. [Commonly used transcendental
functions include sine, cosine, loga-

IEEE 754: An
Interview with
William Kahan

Editor: Charles Severance, Michigan State
University, Department of Computer
Science, 1338 Engineering Bldg., East
Lansing, MI 48824; voice (517) 353-2268;
fax (517) 355-7516; crs@egr.msu.edu;
http://www.egr.msu.edu/~crs

I think that it is nice
to have at least one
example—and the

floating-point standard
is one—where sleaze

did not triumph.

.

March 1998 115

rithms, and exponentials. —CS] We were
going to put the transcendental functions
on the 8087 chip, and it was going to
have an interesting architecture. We
really didn’t want to give away the whole
ball of wax. Intel was going to spring a
real surprise on the world. We were
going to have a chip that had most of the
essentials of a math library using only
40,000 transistors.

THE PROPOSALS
CS: So you brought the draft back to

the IEEE 754 group, but there were mul-
tiple proposals being put forward. DEC
was suggesting that their format be
adopted and there were other proposals
as well. The initial reaction to your doc-
ument was mixed, wasn’t it?

WK: Initially, it looked pretty compli-
cated. But what distinguished our pro-
posal from the others was that we had
reasoned out the details. What we had to
do was enhance the likelihood that the
code would get correct results and we
had to arrange it so that the people who
were really experts in floating point
could write portable software and prove
that it worked. Also, the design had to
be feasible. I had to be reasonably confi-
dent that when floating-point arithmetic
was built into hardware it would still run
at a competitive speed. At the same time
I had to be careful. There were things
going on at Intel that I couldn’t talk
about with the committee. This was par-
ticularly the case of the gradual under-
flow—the subnormal numbers. I had in
mind a way to support gradual under-
flow at high speeds, but I couldn’t talk
about that.

CS: What happened with the propos-
als?

WK: The existing DEC VAX format
had the advantage of a broadly installed
base. Originally, the DEC double-preci-
sion format had the same number of
exponent bits as its single-precision val-
ues, which turned out to be too few
exponent bits for some double-precision
computations. DEC addressed this by
introducing its G double-precision for-
mat, which supported an 11-bit expo-
nent and which was the same as the CDC
floating-point format. With the G for-
mat, the major remaining difference

between the Intel format and the VAX
format was gradual underflow.

THE BATTLE OVER UNDERFLOW
[Gradual underflow provides a num-

ber of advantages over abrupt underflow.
Without it, the gap between zero and the
smallest floating-point number is much
larger than the gap between successive
small floating-point numbers. Without
gradual underflow one can find two val-
ues, X and Y (such that X is not equal to
Y), and yet when you subtract them their
result is zero. While a skilled numerical
analyst could work around this limita-
tion in many situations, this anomaly
would tend to cause problems for less
skilled programmers.—CS]

CS: Given the advantages of under-
flow, why was anyone opposed to it?

WK: The primary reason that some
committee members were opposed to
gradual underflow was the claim that it
would slow performance. After my con-
fidentiality obligations expired, I could
talk about ways of doing gradual under-
flow in hardware without slowing down
all floating-point operations.

At one of the meetings in the late
1970s, DEC came in with a hardware
engineer who said that it was going to be
impossible to build fast hardware to sup-
port the proposed standard. It just so
happened that we had a student, George
Taylor, who had taken up the task of
producing a new floating-point board for
a VAX. We were going to remove the
floating-point boards and substitute our
own with IEEE standard arithmetic.
Otherwise, it conformed to the DEC
VAX instruction set. We were going to
compare a good arithmetic (the VAX
arithmetic) with the IEEE arithmetic and
see what it was going to be like. So
George came to a meeting, showed how
it was going to work, and it was perfectly
clear to everyone there that this was emi-
nently feasible.

CS: Wasn’t there also an attempt to
prove that gradual underflow was bad
from a theoretical viewpoint?

WK: Yes, DEC had been struggling to
persuade us that gradual underflow was
a bad thing. If they could prove it was
unnecessary, there was no reason not to
use DEC’s exponent bias. The excep-

tional handling and other details could
be done with small tweaks. DEC finally
commissioned one of the most prominent
error analysts in the east, G.W. (Pete)
Stewart, to perform the study. He was to
look into the error analysis aspects to
demonstrate that gradual underflow was
not all that I had cracked it up to be.

CS: And what happened?
WK: At a meeting in Boston in 1981,

Stewart reported that, on balance, he
thought gradual underflow was the right
thing to do. The DEC folk who had com-
missioned the report were rather disap-
pointed and they said, “OK, we’ll
publish this later.” They were really
annoyed because this was on their home
turf. Having suffered that rather sub-
stantial defeat, they got disheartened.

CS: With all the success of IEEE 754,
what’s missing?

WK: Compilers and programming
languages new and old—from Java to
Fortran—still lack competent support
for features of IEEE 754 so painstakingly
provided by practically all hardware
nowadays. SANE, the Standard Apple
Numerical Environment, on old Moto-
rola 68K-based Macs is the main excep-
tion. Programmers seem unaware that
IEEE 754 is a standard for their pro-
gramming environment, not just for
hardware.

The new C9X proposal before ANSI
X3J11 is a fragile attempt to insinuate
their support into the C and C++
language standards. It deserves the
informed consideration of the program-
mers it tries to serve, not indifference.

A s new microprocessor-based com-
puters have become widespread,
we have clearly benefited from the

widely available floating-point standard.
Users and programmers alike need to
thank William Kahan and the others
involved in IEEE 754 for their efforts.
For more detail on the subject, see http://
www.egr.msu.edu/~crs/ieee/wkahan. ❖

William Kahan won the ACM Turing
Award in 1989 and is currently professor
of computer science at the University of
California, Berkeley. He can be con-
tacted at wkahan@cs.berkeley.edu.

.

