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Chapter 1

What is High Performance Computing?

1.1 Introduction to the Connexions Edition1

1.1.1 Introduction to the Connexions Edition

The purpose of this book has always been to teach new programmers and scientists about the basics of
High Performance Computing. Too many parallel and high performance computing books focus on the
architecture, theory and computer science surrounding HPC. I wanted this book to speak to the practicing
Chemistry student, Physicist, or Biologist who need to write and run their programs as part of their research.
I was using the �rst edition of the book written by Kevin Dowd in 1996 when I found out that the book was
going out of print. I immediately sent an angry letter to O'Reilly customer support imploring them to keep
the book going as it was the only book of its kind in the marketplace. That complaint letter triggered several
conversations which let to me becoming the author of the second edition. In true "open-source" fashion -
since I complained about it - I got to �x it. During Fall 1997, while I was using the book to teach my HPC
course, I re-wrote the book one chapter at a time, fueled by multiple late-night lattes and the fear of not
having anything ready for the weeks lecture.

The second edition came out in July 1998, and was pretty well received. I got many good comments from
teachers and scientists who felt that the book did a good job of teaching the practitioner - which made me
very happy.

In 1998, this book was published at a crossroads in the history of High Performance Computing. In the
late 1990's there was still a question a to whether the large vector supercomputers with their specialized
memory systems could resist the assault from the increasing clock rates of the microprocessors. Also in the
later 1990's there was a question whether the fast, expensive, and power-hungry RISC architectures would
win over the commodity Intel microprocessors and commodity memory technologies.

By 2003, the market had decided that the commodity microprocessor was king - its performance and the
performance of commodity memory subsystems kept increasing so rapidly. By 2006, the Intel architecture
had eliminated all the RISC architecture processors by greatly increasing clock rate and truly winning the
increasingly important Floating Point Operations per Watt competition. Once users �gured out how to
e�ectively use loosely coupled processors, overall cost and improving energy consumption of commodity
microprocessors became overriding factors in the market place.

These changes led to the book becoming less and less relevant to the common use cases in the HPC �eld
and led to the book going out of print - much to the chagrin of its small but devoted fan base. I was reduced
to buying used copies of the book from Amazon in order to have a few copies laying around the o�ce to give
as gifts to unsuspecting visitors.

Thanks the the forward-looking approach of O'Reilly and Associates to use Founder's Copyright and
releasing out-of-print books under Creative Commons Attribution, this book once again rises from the

1This content is available online at <http://cnx.org/content/m32709/1.1/>.
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ashes like the proverbial Phoenix. By bringing this book to Connexions and publishing it under a Creative
Commons Attribution license we are insuring that the book is never again obsolete. We can take the core
elements of the book which are still relevant and a new community of authors can add to and adapt the
book as needed over time.

Publishing through Connexions also keeps the cost of printed books very low and so it will be a wise
choice as a textbook for college courses in High Performance Computing. The Creative Commons Licensing
and the ability to print locally can make this book available in any country and any school in the world.
Like Wikipedia, those of us who use the book can become the volunteers who will help improve the book
and become co-authors of the book.

I need to thank Kevin Dowd who wrote the �rst edition and graciously let me alter it from cover to cover
in the second edition. Mike Loukides of O'Reilly was the editor of both the �rst and second editions and we
talk from time to time about a possible future edition of the book. Mike was also instrumental in helping
to release the book from O'Reilly under Creative Commons Attribution. The team at Connexions has been
wonderful to work with. We share a passion for High Performance Computing and new forms of publishing
so that the knowledge reaches as many people as possible. I want to thank Jan Odegard and Kathi Fletcher
for encouraging, supporting and helping me through the re-publishing process. Daniel Williamson did an
amazing job of converting the materials from the O'Reilly formats to the Connexions formats.

I truly look forward to seeing how far this book will go now that we can have an unlimited number of
co-authors to invest and then use the book. I look forward to work with you all.

Charles Severance - November 12, 2009

1.2 Introduction to High Performance Computing2

1.2.1 What Is High Performance Computing

1.2.1.1 Why Worry About Performance?

Over the last decade, the de�nition of what is called high performance computing has changed dramatically.
In 1988, an article appeared in the Wall Street Journal titled �Attack of the Killer Micros� that described
how computing systems made up of many small inexpensive processors would soon make large supercom-
puters obsolete. At that time, a �personal computer� costing $3000 could perform 0.25 million �oating-point
operations per second, a �workstation� costing $20,000 could perform 3 million �oating-point operations, and
a supercomputer costing $3 million could perform 100 million �oating-point operations per second. There-
fore, why couldn't we simply connect 400 personal computers together to achieve the same performance of
a supercomputer for $1.2 million?

This vision has come true in some ways, but not in the way the original proponents of the �killer micro�
theory envisioned. Instead, the microprocessor performance has relentlessly gained on the supercomputer
performance. This has occurred for two reasons. First, there was much more technology �headroom� for
improving performance in the personal computer area, whereas the supercomputers of the late 1980s were
pushing the performance envelope. Also, once the supercomputer companies broke through some technical
barrier, the microprocessor companies could quickly adopt the successful elements of the supercomputer
designs a few short years later. The second and perhaps more important factor was the emergence of
a thriving personal and business computer market with ever-increasing performance demands. Computer
usage such as 3D graphics, graphical user interfaces, multimedia, and games were the driving factors in
this market. With such a large market, available research dollars poured into developing inexpensive high
performance processors for the home market. The result of this trend toward faster smaller computers
is directly evident as former supercomputer manufacturers are being purchased by workstation companies
(Silicon Graphics purchased Cray, and Hewlett-Packard purchased Convex in 1996).

As a result nearly every person with computer access has some �high performance� processing. As
the peak speeds of these new personal computers increase, these computers encounter all the performance

2This content is available online at <http://cnx.org/content/m32676/1.1/>.
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challenges typically found on supercomputers.
While not all users of personal workstations need to know the intimate details of high performance

computing, those who program these systems for maximum performance will bene�t from an understanding
of the strengths and weaknesses of these newest high performance systems.

1.2.1.2 Scope of High Performance Computing

High performance computing runs a broad range of systems, from our desktop computers through large
parallel processing systems. Because most high performance systems are based on reduced instruction set

computer (RISC) processors, many techniques learned on one type of system transfer to the other systems.
High performance RISC processors are designed to be easily inserted into a multiple-processor system

with 2 to 64 CPUs accessing a single memory using symmetric multi processing (SMP). Programming
multiple processors to solve a single problem adds its own set of additional challenges for the programmer.
The programmer must be aware of how multiple processors operate together, and how work can be e�ciently
divided among those processors.

Even though each processor is very powerful, and small numbers of processors can be put into a single
enclosure, often there will be applications that are so large they need to span multiple enclosures. In order to
cooperate to solve the larger application, these enclosures are linked with a high-speed network to function
as a network of workstations (NOW). A NOW can be used individually through a batch queuing system or
can be used as a large multicomputer using a message passing tool such as parallel virtual machine (PVM)
or message-passing interface (MPI).

For the largest problems with more data interactions and those users with compute budgets in the millions
of dollars, there is still the top end of the high performance computing spectrum, the scalable parallel
processing systems with hundreds to thousands of processors. These systems come in two �avors. One type
is programmed using message passing. Instead of using a standard local area network, these systems are
connected using a proprietary, scalable, high-bandwidth, low-latency interconnect (how is that for marketing
speak?). Because of the high performance interconnect, these systems can scale to the thousands of processors
while keeping the time spent (wasted) performing overhead communications to a minimum.

The second type of large parallel processing system is the scalable non-uniform memory access (NUMA)
systems. These systems also use a high performance inter-connect to connect the processors, but instead of
exchanging messages, these systems use the interconnect to implement a distributed shared memory that can
be accessed from any processor using a load/store paradigm. This is similar to programming SMP systems
except that some areas of memory have slower access than others.

1.2.1.3 Studying High Performance Computing

The study of high performance computing is an excellent chance to revisit computer architecture. Once
we set out on the quest to wring the last bit of performance from our computer systems, we become more
motivated to fully understand the aspects of computer architecture that have a direct impact on the system's
performance.

Throughout all of computer history, salespeople have told us that their compiler will solve all of our
problems, and that the compiler writers can get the absolute best performance from their hardware. This
claim has never been, and probably never will be, completely true. The ability of the compiler to deliver
the peak performance available in the hardware improves with each succeeding generation of hardware and
software. However, as we move up the hierarchy of high performance computing architectures we can depend
on the compiler less and less, and programmers must take responsibility for the performance of their code.

In the single processor and SMP systems with few CPUs, one of our goals as programmers should be
to stay out of the way of the compiler. Often constructs used to improve performance on a particular
architecture limit our ability to achieve performance on another architecture. Further, these �brilliant� (read
obtuse) hand optimizations often confuse a compiler, limiting its ability to automatically transform our code
to take advantage of the particular strengths of the computer architecture.



4 CHAPTER 1. WHAT IS HIGH PERFORMANCE COMPUTING?

As programmers, it is important to know how the compiler works so we can know when to help it out
and when to leave it alone. We also must be aware that as compilers improve (never as much as salespeople
claim) it's best to leave more and more to the compiler.

As we move up the hierarchy of high performance computers, we need to learn new techniques to map
our programs onto these architectures, including language extensions, library calls, and compiler directives.
As we use these features, our programs become less portable. Also, using these higher-level constructs, we
must not make modi�cations that result in poor performance on the individual RISC microprocessors that
often make up the parallel processing system.

1.2.1.4 Measuring Performance

When a computer is being purchased for computationally intensive applications, it is important to determine
how well the system will actually perform this function. One way to choose among a set of competing systems
is to have each vendor loan you a system for a period of time to test your applications. At the end of the
evaluation period, you could send back the systems that did not make the grade and pay for your favorite
system. Unfortunately, most vendors won't lend you a system for such an extended period of time unless
there is some assurance you will eventually purchase the system.

More often we evaluate the system's potential performance using benchmarks. There are industry bench-
marks and your own locally developed benchmarks. Both types of benchmarks require some careful thought
and planning for them to be an e�ective tool in determining the best system for your application.

1.2.1.5 The Next Step

Quite aside from economics, computer performance is a fascinating and challenging subject. Computer
architecture is interesting in its own right and a topic that any computer professional should be comfortable
with. Getting the last bit of per- formance out of an important application can be a stimulating exercise, in
addition to an economic necessity. There are probably a few people who simply enjoy matching wits with a
clever computer architecture.

What do you need to get into the game?

• A basic understanding of modern computer architecture. You don't need an advanced degree in
computer engineering, but you do need to understand the basic terminology.

• A basic understanding of benchmarking, or performance measurement, so you can quantify your own
successes and failures and use that information to improve the performance of your application.

This book is intended to be an easily understood introduction and overview of high performance computing.
It is an interesting �eld, and one that will become more important as we make even greater demands on
our most common personal computers. In the high performance computer �eld, there is always a tradeo�
between the single CPU performance and the performance of a multiple processor system. Multiple processor
systems are generally more expensive and di�cult to program (unless you have this book).

Some people claim we eventually will have single CPUs so fast we won't need to understand any type of
advanced architectures that require some skill to program.

So far in this �eld of computing, even as performance of a single inexpensive microprocessor has increased
over a thousandfold, there seems to be no less interest in lashing a thousand of these processors together to
get a millionfold increase in power. The cheaper the building blocks of high performance computing become,
the greater the bene�t for using many processors. If at some point in the future, we have a single processor
that is faster than any of the 512-processor scalable systems of today, think how much we could do when we
connect 512 of those new processors together in a single system.

That's what this book is all about. If you're interested, read on.



Chapter 2

Memory

2.1 Introduction1

2.1.1 Memory

Let's say that you are fast asleep some night and begin dreaming. In your dream, you have a time machine
and a few 500-MHz four-way superscalar processors. You turn the time machine back to 1981. Once you
arrive back in time, you go out and purchase an IBM PC with an Intel 8088 microprocessor running at 4.77
MHz. For much of the rest of the night, you toss and turn as you try to adapt the 500-MHz processor to the
Intel 8088 socket using a soldering iron and Swiss Army knife. Just before you wake up, the new computer
�nally works, and you turn it on to run the Linpack2 benchmark and issue a press release. Would you expect
this to turn out to be a dream or a nightmare? Chances are good that it would turn out to be a nightmare,
just like the previous night where you went back to the Middle Ages and put a jet engine on a horse. (You
have got to stop eating double pepperoni pizzas so late at night.)

Even if you can speed up the computational aspects of a processor in�nitely fast, you still must load and
store the data and instructions to and from a memory. Today's processors continue to creep ever closer to
in�nitely fast processing. Memory performance is increasing at a much slower rate (it will take longer for
memory to become in�nitely fast). Many of the interesting problems in high performance computing use a
large amount of memory. As computers are getting faster, the size of problems they tend to operate on also
goes up. The trouble is that when you want to solve these problems at high speeds, you need a memory
system that is large, yet at the same time fast�a big challenge. Possible approaches include the following:

• Every memory system component can be made individually fast enough to respond to every memory
access request.

• Slow memory can be accessed in a round-robin fashion (hopefully) to give the e�ect of a faster memory
system.

• The memory system design can be made �wide� so that each transfer contains many bytes of informa-
tion.

• The system can be divided into faster and slower portions and arranged so that the fast portion is used
more often than the slow one.

Again, economics are the dominant force in the computer business. A cheap, statistically optimized memory
system will be a better seller than a prohibitively expensive, blazingly fast one, so the �rst choice is not much
of a choice at all. But these choices, used in combination, can attain a good fraction of the performance
you would get if every component were fast. Chances are very good that your high performance workstation
incorporates several or all of them.

1This content is available online at <http://cnx.org/content/m32733/1.1/>.
2See Chapter 15, Using Published Benchmarks, for details on the Linpack benchmark.
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Once the memory system has been decided upon, there are things we can do in software to see that it
is used e�ciently. A compiler that has some knowledge of the way memory is arranged and the details of
the caches can optimize their use to some extent. The other place for optimizations is in user applications,
as we'll see later in the book. A good pattern of memory access will work with, rather than against, the
components of the system.

In this chapter we discuss how the pieces of a memory system work. We look at how patterns of data
and instruction access factor into your overall runtime, especially as CPU speeds increase. We also talk a
bit about the performance implications of running in a virtual memory environment.

2.2 Memory Technology3

2.2.1 Memory Technology

Almost all fast memories used today are semiconductor-based.4 They come in two �avors: dynamic random
access memory (DRAM) and static random access memory (SRAM). The term random means that you can
address memory locations in any order. This is to distinguish random access from serial memories, where
you have to step through all intervening locations to get to the particular one you are interested in. An
example of a storage medium that is not random is magnetic tape. The terms dynamic and static have to
do with the technology used in the design of the memory cells. DRAMs are charge-based devices, where
each bit is represented by an electrical charge stored in a very small capacitor. The charge can leak away in
a short amount of time, so the system has to be continually refreshed to prevent data from being lost. The
act of reading a bit in DRAM also discharges the bit, requiring that it be refreshed. It's not possible to read
the memory bit in the DRAM while it's being refreshed.

SRAM is based on gates, and each bit is stored in four to six connected transistors. SRAM memories
retain their data as long as they have power, without the need for any form of data refresh.

DRAM o�ers the best price/performance, as well as highest density of memory cells per chip. This means
lower cost, less board space, less power, and less heat. On the other hand, some applications such as cache
and video memory require higher speed, to which SRAM is better suited. Currently, you can choose between
SRAM and DRAM at slower speeds � down to about 50 nanoseconds (ns). SRAM has access times down
to about 7 ns at higher cost, heat, power, and board space.

In addition to the basic technology to store a single bit of data, memory performance is limited by the
practical considerations of the on-chip wiring layout and the external pins on the chip that communicate the
address and data information between the memory and the processor.

2.2.1.1 Access Time

The amount of time it takes to read or write a memory location is called the memory access time. A related
quantity is the memory cycle time. Whereas the access time says how quickly you can reference a memory
location, cycle time describes how often you can repeat references. They sound like the same thing, but
they're not. For instance, if you ask for data from DRAM chips with a 50-ns access time, it may be 100 ns
before you can ask for more data from the same chips. This is because the chips must internally recover from
the previous access. Also, when you are retrieving data sequentially from DRAM chips, some technologies
have improved performance. On these chips, data immediately following the previously accessed data may
be accessed as quickly as 10 ns.

Access and cycle times for commodity DRAMs are shorter than they were just a few years ago, meaning
that it is possible to build faster memory systems. But CPU clock speeds have increased too. The home
computer market makes a good study. In the early 1980s, the access time of commodity DRAM (200 ns)
was shorter than the clock cycle (4.77 MHz = 210 ns) of the IBM PC XT. This meant that DRAM could

3This content is available online at <http://cnx.org/content/m32716/1.1/>.
4Magnetic core memory is still used in applications where radiation �hardness� � resistance to changes caused by ionizing

radiation � is important.
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be connected directly to the CPU without worrying about over running the memory system. Faster XT and
AT models were introduced in the mid-1980s with CPUs that clocked more quickly than the access times
of available commodity memory. Faster memory was available for a price, but vendors punted by selling
computers with wait states added to the memory access cycle. Wait states are arti�cial delays that slow
down references so that memory appears to match the speed of a faster CPU � at a penalty. However, the
technique of adding wait states begins to signi�cantly impact performance around 25?33MHz. Today, CPU
speeds are even farther ahead of DRAM speeds.

The clock time for commodity home computers has gone from 210 ns for the XT to around 3 ns for a
300-MHz Pentium-II, but the access time for commodity DRAM has decreased disproportionately less �
from 200 ns to around 50 ns. Processor performance doubles every 18 months, while memory performance
doubles roughly every seven years.

The CPU/memory speed gap is even larger in workstations. Some models clock at intervals as short as
1.6 ns. How do vendors make up the di�erence between CPU speeds and memory speeds? The memory in
the Cray-1 supercomputer used SRAM that was capable of keeping up with the 12.5-ns clock cycle. Using
SRAM for its main memory system was one of the reasons that most Cray systems needed liquid cooling.

Unfortunately, it's not practical for a moderately priced system to rely exclusively on SRAM for storage.
It's also not practical to manufacture inexpensive systems with enough storage using exclusively SRAM.

The solution is a hierarchy of memories using processor registers, one to three levels of SRAM cache,
DRAM main memory, and virtual memory stored on media such as disk. At each point in the memory
hierarchy, tricks are employed to make the best use of the available technology. For the remainder of this
chapter, we will examine the memory hierarchy and its impact on performance.

In a sense, with today's high performance microprocessor performing computations so quickly, the task
of the high performance programmer becomes the careful management of the memory hierarchy. In some
sense it's a useful intellectual exercise to view the simple computations such as addition and multiplication
as �in�nitely fast� in order to get the programmer to focus on the impact of memory operations on the overall
performance of the program.

2.3 Registers5

2.3.1 Registers

At least the top layer of the memory hierarchy, the CPU registers, operate as fast as the rest of the processor.
The goal is to keep operands in the registers as much as possible. This is especially important for intermediate
values used in a long computation such as:

X = G * 2.41 + A / W - W * M

While computing the value of A divided by W, we must store the result of multiplying G by 2.41. It would
be a shame to have to store this intermediate result in memory and then reload it a few instructions later.
On any modern processor with moderate optimization, the intermediate result is stored in a register. Also,
the value W is used in two computations, and so it can be loaded once and used twice to eliminate a �wasted�
load.

Compilers have been very good at detecting these types of optimizations and e�ciently making use of
the available registers since the 1970s. Adding more registers to the processor has some performance bene�t.
It's not practical to add enough registers to the processor to store the entire problem data. So we must still
use the slower memory technology.

5This content is available online at <http://cnx.org/content/m32681/1.1/>.
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2.4 Caches6

2.4.1 Caches

Once we go beyond the registers in the memory hierarchy, we encounter caches. Caches are small amounts
of SRAM that store a subset of the contents of the memory. The hope is that the cache will have the right
subset of main memory at the right time.

The actual cache architecture has had to change as the cycle time of the processors has improved. The
processors are so fast that o�-chip SRAM chips are not even fast enough. This has lead to a multilevel cache
approach with one, or even two, levels of cache implemented as part of the processor. Table 2.1 shows the
approximate speed of accessing the memory hierarchy on a 500-MHz DEC 21164 Alpha.

Registers 2 ns

L1 On-Chip 4 ns

L2 On-Chip 5 ns

L3 O�-Chip 30 ns

Memory 220 ns

Table 2.1: Table 3-1: Memory Access Speed on a DEC 21164 Alpha

When every reference can be found in a cache, you say that you have a 100% hit rate. Generally, a hit
rate of 90% or better is considered good for a level-one (L1) cache. In level-two (L2) cache, a hit rate of
above 50% is considered acceptable. Below that, application performance can drop o� steeply.

One can characterize the average read performance of the memory hierarchy by examining the probability
that a particular load will be satis�ed at a particular level of the hierarchy. For example, assume a memory
architecture with an L1 cache speed of 10 ns, L2 speed of 30 ns, and memory speed of 300 ns. If a memory
reference were satis�ed from L1 cache 75% of the time, L2 cache 20% of the time, and main memory 5% of
the time, the average memory performance would be:

(0.75 * 10 ) + ( 0.20 * 30 ) + ( 0.05 * 300 ) = 28.5 ns

You can easily see why it's important to have an L1 cache hit rate of 90% or higher.
Given that a cache holds only a subset of the main memory at any time, it's important to keep an index of

which areas of the main memory are currently stored in the cache. To reduce the amount of space that must
be dedicated to tracking which memory areas are in cache, the cache is divided into a number of equal sized
slots known as lines. Each line contains some number of sequential main memory locations, generally four
to sixteen integers or real numbers. Whereas the data within a line comes from the same part of memory,
other lines can contain data that is far separated within your program, or perhaps data from somebody else's
program, as in Figure 2.1 (Figure 3-1: Cache lines can come from di�erent parts of memory). When you
ask for something from memory, the computer checks to see if the data is available within one of these cache
lines. If it is, the data is returned with a minimal delay. If it's not, your program may be delayed while a
new line is fetched from main memory. Of course, if a new line is brought in, another has to be thrown out.
If you're lucky, it won't be the one containing the data you are just about to need.

6This content is available online at <http://cnx.org/content/m32725/1.1/>.
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Figure 3-1: Cache lines can come from di�erent parts of memory

Figure 2.1

On multiprocessors (computers with several CPUs), written data must be returned to main memory so
the rest of the processors can see it, or all other processors must be made aware of local cache activity.
Perhaps they need to be told to invalidate old lines containing the previous value of the written variable so
that they don't accidentally use stale data. This is known as maintaining coherency between the di�erent
caches. The problem can become very complex in a multiprocessor system.7

Caches are e�ective because programs often exhibit characteristics that help kep the hit rate high. These
characteristics are called spatial and temporal locality of reference; programs often make use of instructions
and data that are near to other instructions and data, both in space and time. When a cache line is
retrieved from main memory, it contains not only the information that caused the cache miss, but also some
neighboring information. Chances are good that the next time your program needs data, it will be in the
cache line just fetched or another one recently fetched.

Caches work best when a program is reading sequentially through the memory. Assume a program is
reading 32-bit integers with a cache line size of 256 bits. When the program references the �rst word in
the cache line, it waits while the cache line is loaded from main memory. Then the next seven references to
memory are satis�ed quickly from the cache. This is called unit stride because the address of each successive
data element is incremented by one and all the data retrieved into the cache is used. The following loop is
a unit-stride loop:

DO I=1,1000000

SUM = SUM + A(I)

END DO

When a program accesses a large data structure using �non-unit stride,� performance su�ers because data is
loaded into cache that is not used. For example:

7Chapter 10, Shared-Memory Multiprocessors, describes cache coherency in more detail.
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DO I=1,1000000, 8

SUM = SUM + A(I)

END DO

This code would experience the same number of cache misses as the previous loop, and the same amount of
data would be loaded into the cache. However, the program needs only one of the eight 32-bit words loaded
into cache. Even though this program performs one-eighth the additions of the previous loop, its elapsed
time is roughly the same as the previous loop because the memory operations dominate performance.

While this example may seem a bit contrived, there are several situations in which non-unit strides occur
quite often. First, when a FORTRAN two-dimensional array is stored in memory, successive elements in the
�rst column are stored sequentially followed by the elements of the second column. If the array is processed
with the row iteration as the inner loop, it produces a unit-stride reference pattern as follows:

REAL*4 A(200,200)

DO J = 1,200

DO I = 1,200

SUM = SUM + A(I,J)

END DO

END DO

Interestingly, a FORTRAN programmer would most likely write the loop (in alphabetical order) as follows,
producing a non-unit stride of 800 bytes between successive load operations:

REAL*4 A(200,200)

DO I = 1,200

DO J = 1,200

SUM = SUM + A(I,J)

END DO

END DO

Because of this, some compilers can detect this suboptimal loop order and reverse the order of the loops to
make best use of the memory system. As we will see in Chapter 4, however, this code transformation may
produce di�erent results, and so you may have to give the compiler �permission� to interchange these loops
in this particular example (or, after reading this book, you could just code it properly in the �rst place).

while ( ptr != NULL ) ptr = ptr->next;

The next element that is retrieved is based on the contents of the current element. This type of loop bounces
all around memory in no particular pattern. This is called pointer chasing and there are no good ways to
improve the performance of this code.

A third pattern often found in certain types of codes is called gather (or scatter) and occurs in loops
such as:
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SUM = SUM + ARR ( IND(I) )

where the IND array contains o�sets into the ARR array. Again, like the linked list, the exact pattern of
memory references is known only at runtime when the values stored in the IND array are known. Some
special-purpose systems have special hardware support to accelerate this particular operation.

2.5 Cache Organization8

2.5.1 Cache Organization

The process of pairing memory locations with cache lines is called mapping. Of course, given that a cache is
smaller than main memory, you have to share the same cache lines for di�erent memory locations. In caches,
each cache line has a record of the memory address (called the tag) it represents and perhaps when it was
last used. The tag is used to track which area of memory is stored in a particular cache line.

The way memory locations (tags) are mapped to cache lines can have a bene�cial e�ect on the way your
program runs, because if two heavily used memory locations map onto the same cache line, the miss rate
will be higher than you would like it to be. Caches can be organized in one of several ways: direct mapped,
fully associative, and set associative.

2.5.1.1 Direct-Mapped Cache

Direct mapping, as shown in Figure 2.2 (Figure 3-2: Many memory addresses map to the same cache line), is
the simplest algorithm for deciding how memory maps onto the cache. Say, for example, that your computer
has a 4-KB cache. In a direct mapped scheme, memory location 0 maps into cache location 0, as do memory
locations 4K, 8K, 12K, etc. In other words, memory maps onto the cache size. Another way to think about
it is to imagine a metal spring with a chalk line marked down the side. Every time around the spring, you
encounter the chalk line at the same place modulo the circumference of the spring. If the spring is very long,
the chalk line crosses many coils, the analog being a large memory with many locations mapping into the
same cache line.

Problems occur when alternating runtime memory references in a direct-mapped cache point to the same
cache line. Each reference causes a cache miss and replaces the entry just replaced, causing a lot of overhead.
The popular word for this is thrashing. When there is lots of thrashing, a cache can be more of a liability
than an asset because each cache miss requires that a cache line be re�lled � an operation that moves more
data than merely satisfying the reference directly from main memory. It is easy to construct a pathological
case that causes thrashing in a 4-KB direct-mapped cache:

8This content is available online at <http://cnx.org/content/m32722/1.1/>.
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Figure 3-2: Many memory addresses map to the same cache line

Figure 2.2

REAL*4 A(1024), B(1024)

COMMON /STUFF/ A,B

DO I=1,1024

A(I) = A(I) * B(I)

END DO

END

The arrays A and B both take up exactly 4 KB of storage, and their inclusion together in COMMON assures
that the arrays start exactly 4 KB apart in memory. In a 4-KB direct mapped cache, the same line that is
used for A(1) is used for B(1), and likewise for A(2) and B(2), etc., so alternating references cause repeated
cache misses. To �x it, you could either adjust the size of the array A, or put some other variables into
COMMON, between them. For this reason one should generally avoid array dimensions that are close to powers
of two.

2.5.1.2 Fully Associative Cache

At the other extreme from a direct mapped cache is a fully associative cache, where any memory location
can be mapped into any cache line, regardless of memory address. Fully associative caches get their name
from the type of memory used to construct them � associative memory. Associative memory is like regular
memory, except that each memory cell knows something about the data it contains.
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When the processor goes looking for a piece of data, the cache lines are asked all at once whether any of
them has it. The cache line containing the data holds up its hand and says �I have it�; if none of them do,
there is a cache miss. It then becomes a question of which cache line will be replaced with the new data.
Rather than map memory locations to cache lines via an algorithm, like a direct- mapped cache, the memory
system can ask the fully associative cache lines to choose among themselves which memory locations they
will represent. Usually the least recently used line is the one that gets overwritten with new data. The
assumption is that if the data hasn't been used in quite a while, it is least likely to be used in the future.

Fully associative caches have superior utilization when compared to direct mapped caches. It's di�cult
to �nd real-world examples of programs that will cause thrashing in a fully associative cache. The expense
of fully associative caches is very high, in terms of size, price, and speed. The associative caches that do
exist tend to be small.

2.5.1.3 Set-Associative Cache

Now imagine that you have two direct mapped caches sitting side by side in a single cache unit as shown in
Figure 2.3 (Figure 3-3: Two-way set-associative cache). Each memory location corresponds to a particular
cache line in each of the two direct-mapped caches. The one you choose to replace during a cache miss
is subject to a decision about whose line was used last � the same way the decision was made in a fully
associative cache except that now there are only two choices. This is called a set-associative cache. Set-
associative caches generally come in two and four separate banks of cache. These are called two-way and
four-way set associative caches, respectively. Of course, there are bene�ts and drawbacks to each type of
cache. A set-associative cache is more immune to cache thrashing than a direct-mapped cache of the same
size, because for each mapping of a memory address into a cache line, there are two or more choices where
it can go. The beauty of a direct-mapped cache, however, is that it's easy to implement and, if made large
enough, will perform roughly as well as a set-associative design. Your machine may contain multiple caches
for several di�erent purposes. Here's a little program for causing thrashing in a 4-KB two-way set- associative
cache:

REAL*4 A(1024), B(1024), C(1024)

COMMON /STUFF/ A,B,C

DO I=1,1024

A(I) = A(I) * B(I) + C(I)

END DO

END

Like the previous cache thrasher program, this forces repeated accesses to the same cache lines, except that
now there are three variables contending for the choose set same mapping instead of two. Again, the way
to �x it would be to change the size of the arrays or insert something in between them, in COMMON. By the
way, if you accidentally arranged a program to thrash like this, it would be hard for you to detect it � aside
from a feeling that the program runs a little slow. Few vendors provide tools for measuring cache misses.
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Figure 3-3: Two-way set-associative cache

Figure 2.3

2.5.1.4 Instruction Cache

So far we have glossed over the two kinds of information you would expect to �nd in a cache between main
memory and the CPU: instructions and data. But if you think about it, the demand for data is separate from
the demand for instructions. In superscalar processors, for example, it's possible to execute an instruction
that causes a data cache miss alongside other instructions that require no data from cache at all, i.e., they
operate on registers. It doesn't seem fair that a cache miss on a data reference in one instruction should
keep you from fetching other instructions because the cache is tied up. Furthermore, a cache depends on
locality of reference between bits of data and other bits of data or instructions and other instructions, but
what kind of interplay is there between instructions and data? It would seem possible for instructions to
bump perfectly useful data from cache, or vice versa, with complete disregard for locality of reference.

Many designs from the 1980s used a single cache for both instructions and data. But newer designs are
employing what is known as the Harvard Memory Architecture, where the demand for data is segregated
from the demand for instructions.

Main memory is a still a single large pool, but these processors have separate data and instruction
caches, possibly of di�erent designs. By providing two independent sources for data and instructions, the
aggregate rate of information coming from memory is increased, and interference between the two types
of memory references is minimized. Also, instructions generally have an extremely high level of locality of
reference because of the sequential nature of most programs. Because the instruction caches don't have to
be particularly large to be e�ective, a typical architecture is to have separate L1 caches for instructions and
data and to have a combined L2 cache. For example, the IBM/Motorola PowerPC 604e has separate 32-K
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four-way set-associative L1 caches for instruction and data and a combined L2 cache.

2.6 Virtual Memory9

2.6.1 Virtual Memory

Virtual memory decouples the addresses used by the program (virtual addresses) from the actual addresses
where the data is stored in memory (physical addresses). Your program sees its address space starting at
0 and working its way up to some large number, but the actual physical addresses assigned can be very
di�erent. It gives a degree of �exibility by allowing all processes to believe they have the entire memory
system to themselves. Another trait of virtual memory systems is that they divide your program's memory
up into pages � chunks. Page sizes vary from 512 bytes to 1 MB or larger, depending on the machine. Pages
don't have to be allocated contiguously, though your program sees them that way. By being separated into
pages, programs are easier to arrange in memory, or move portions out to disk.

2.6.1.1 Page Tables

Say that your program asks for a variable stored at location 1000. In a virtual memory machine, there is
no direct correspondence between your program's idea of where location 1000 is and the physical memory
systems' idea. To �nd where your variable is actually stored, the location has to be translated from a virtual
to a physical address. The map containing such translations is called a page table. Each process has a several
page tables associated with it, corresponding to di�erent regions, such as program text and data segments.

To understand how address translation works, imagine the following scenario: at some point, your pro-
gram asks for data from location 1000. Figure 2.4 (Figure 3-4: Virtual-to-physical address mapping) shows
the steps required to complete the retrieval of this data. By choosing location 1000, you have identi�ed
which region the memory reference falls in, and this identi�es which page table is involved. Location 1000
then helps the processor choose an entry within the table. For instance, if the page size is 512 bytes, 1000
falls within the second page (pages range from addresses 0�511, 512�1023, 1024�1535, etc.).

Therefore, the second table entry should hold the address of the page housing the value at location 1000.

9This content is available online at <http://cnx.org/content/m32728/1.1/>.
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Figure 3-4: Virtual-to-physical address mapping

Figure 2.4

The operating system stores the page-table addresses virtually, so it's going to take a virtual-to-physical
translation to locate the table in memory. One more virtual-to- physical translation, and we �nally have
the true address of location 1000. The memory reference can complete, and the processor can return to
executing your program.

2.6.1.2 Translation Lookaside Bu�er

As you can see, address translation through a page table is pretty complicated. It required two table lookups
(maybe three) to locate our data. If every memory reference was that complicated, virtual memory computers
would be horrible performers. Fortunately, locality of reference causes virtual address translations to group
together; a program may repeat the same virtual page mapping millions of times a second. And where we
have repeated use of the same data, we can apply a cache.

All modern virtual memory machines have a special cache called a translation lookaside bu�er (TLB)
for virtual-to-physical-memory-address translation. The two inputs to the TLB are an integer that identi�es
the program making the memory request and the virtual page requested. From the output pops a pointer
to the physical page number. Virtual address in; physical address out. TLB lookups occur in parallel with
instruction execution, so if the address data is in the TLB, memory references proceed quickly.

Like other kinds of caches, the TLB is limited in size. It doesn't contain enough entries to handle all
the possible virtual-to-physical-address translations for all the programs that might run on your computer.
Larger pools of address translations are kept out in memory, in the page tables. If your program asks for a
virtual-to- physical-address translation, and the entry doesn't exist in the TLB, you su�er a TLB miss. The
information needed may have to be generated (a new page may need to be created), or it may have to be
retrieved from the page table.

The TLB is good for the same reason that other types of caches are good: it reduces the cost of memory
references. But like other caches, there are pathological cases where the TLB can fail to deliver value. The
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easiest case to construct is one where every memory reference your program makes causes a TLB miss:

REAL X(10000000)

COMMON X

DO I=0,9999

DO J=1,10000000,10000

SUM = SUM + X(J+I)

END DO

END DO

Assume that the TLB page size for your computer is less than 40 KB. Every time through the inner loop
in the above example code, the program asks for data that is 4 bytes*10,000 = 40,000 bytes away from the
last reference. That is, each reference falls on a di�erent memory page. This causes 1000 TLB misses in the
inner loop, taken 1001 times, for a total of at least one million TLB misses. To add insult to injury, each
reference is guaranteed to cause a data cache miss as well. Admittedly, no one would start with a loop like
the one above. But presuming that the loop was any good to you at all, the restructured version in the code
below would cruise through memory like a warm knife through butter:

REAL X(10000000)

COMMON X

DO I=1,10000000

SUM = SUM + X(I)

END DO

The revised loop has unit stride, and TLB misses occur only every so often. Usually it is not necessary to
explicitly tune programs to make good use of the TLB. Once a program is tuned to be �cache-friendly,� it
nearly always is tuned to be TLB friendly.

Because there is a performance bene�t to keeping the TLB very small, the TLB entry often contains a
length �eld. A single TLB entry can be over a megabyte in length and can be used to translate addresses
stored in multiple virtual memory pages.

2.6.1.3 Page Faults

A page table entry also contains other information about the page it represents, including �ags to tell whether
the translation is valid, whether the associated page can be modi�ed, and some information describing how
new pages should be initialized. References to pages that aren't marked valid are called page faults.

Taking a worst-case scenario, say that your program asks for a variable from a particular memory location.
The processor goes to look for it in the cache and �nds it isn't there (cache miss), which means it must be
loaded from memory. Next it goes to the TLB to �nd the physical location of the data in memory and �nds
there is no TLB entry (a TLB miss). Then it tries consulting the page table (and re�lling the TLB), but
�nds that either there is no entry for your particular page or that the memory page has been shipped to disk
(both are page faults). Each step of the memory hierarchy has shrugged o� your request. A new page will
have to be created in memory and possibly, depending on the circumstances, re�lled from disk.

Although they take a lot of time, page faults aren't errors. Even under optimal conditions every program
su�ers some number of page faults. Writing a variable for the �rst time or calling a subroutine that has
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never been called can cause a page fault. This may be surprising if you have never thought about it before.
The illusion is that your entire program is present in memory from the start, but some portions may never
be loaded. There is no reason to make space for a page whose data is never referenced or whose instructions
are never executed. Only those pages that are required to run the job get created or pulled in from the
disk.10

The pool of physical memory pages is limited because physical memory is limited, so on a machine where
many programs are lobbying for space, there will be a higher number of page faults. This is because physical
memory pages are continually being recycled for other purposes. However, when you have the machine to
yourself, and memory is less in demand, allocated pages tend to stick around for a while. In short, you
can expect fewer page faults on a quiet machine. One trick to remember if you ever end up working for a
computer vendor: always run short benchmarks twice. On some systems, the number of page faults will go
down. This is because the second run �nds pages left in memory by the �rst, and you won't have to pay for
page faults again.11

Paging space (swap space) on the disk is the last and slowest piece of the memory hierarchy for most
machines. In the worst-case scenario we saw how a memory reference could be pushed down to slower and
slower performance media before �nally being satis�ed. If you step back, you can view the disk paging
space as having the same relationship to main memory as main memory has to cache. The same kinds of
optimizations apply too, and locality of reference is important. You can run programs that are larger than
the main memory system of your machine, but sometimes at greatly decreased performance. When we look
at memory optimizations in Chapter 8, we will concentrate on keeping the activity in the fastest parts of
the memory system and avoiding the slow parts.

2.7 Improving Memory Performance12

2.7.1 Improving Memory Performance

Given the importance, in the area of high performance computing, of the performance of a computer's
memory subsystem, many techniques have been used to improve the performance of the memory systems of
computers. The two attributes of memory system performance are generally bandwidth and latency. Some
memory system design changes improve one at the expense of the other, and other improvements positively
impact both bandwidth and latency. Bandwidth generally focuses on the best possible steady-state transfer
rate of a memory system. Usually this is measured while running a long unit-stride loop reading or reading
and writing memory.13 Latency is a measure of the worst-case performance of a memory system as it moves
a small amount of data such as a 32- or 64-bit word between the processor and memory. Both are important
because they are an important part of most high performance applications.

Because memory systems are divided into components, there are di�erent bandwidth and latency �gures
between di�erent components as shown in Figure 2.5 (Figure 3-5: Simple Memory System). The bandwidth
rate between a cache and the CPU will be higher than the bandwidth between main memory and the cache,
for instance. There may be several caches and paths to memory as well. Usually, the peak memory bandwidth
quoted by vendors is the speed between the data cache and the processor.

In the rest of this section, we look at techniques to improve latency, bandwidth, or both.

2.7.1.1 Large Caches

As we mentioned at the start of this chapter, the disparity between CPU speeds and memory is growing. If
you look closely, you can see vendors innovating in several ways. Some workstations are being o�ered with
4- MB data caches! This is larger than the main memory systems of machines just a few years ago. With a
large enough cache, a small (or even moderately large) data set can �t completely inside and get incredibly

10The term for this is demand paging.
11Text pages are identi�ed by the disk device and block number from which they came.
12This content is available online at <http://cnx.org/content/m32736/1.1/>.
13See the STREAM section in Chapter 15 for measures of memory bandwidth.
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good performance. Watch out for this when you are testing new hardware. When your program grows too
large for the cache, the performance may drop o� considerably, perhaps by a factor of 10 or more, depending
on the memory access patterns. Interestingly, an increase in cache size on the part of vendors can render a
benchmark obsolete.

Figure 3-5: Simple Memory System

Figure 2.5

Up to 1992, the Linpack 100×100 benchmark was probably the single most- respected benchmark to
determine the average performance across a wide range of applications. In 1992, IBM introduced the IBM
RS-6000 which had a cache large enough to contain the entire 100×100 matrix for the duration of the
benchmark. For the �rst time, a workstation had performance on this benchmark on the same order of
supercomputers. In a sense, with the entire data structure in a SRAM cache, the RS-6000 was operating like
a Cray vector supercomputer. The problem was that the Cray could maintain and improve the performance
for a 120×120 matrix, whereas the RS-6000 su�ered a signi�cant performance loss at this increased matrix
size. Soon, all the other workstation vendors introduced similarly large caches, and the 100×100 Linpack
benchmark ceased to be useful as an indicator of average application performance.

2.7.1.2 Wider Memory Systems

Consider what happens when a cache line is re�lled from memory: consecutive memory locations from main
memory are read to �ll consecutive locations within the cache line. The number of bytes transferred depends
on how big the line is � anywhere from 16 bytes to 256 bytes or more. We want the re�ll to proceed quickly
because an instruction is stalled in the pipeline, or perhaps the processor is waiting for more instructions.
In Figure 2.6 (Figure 3-6: Narrow memory system), if we have two DRAM chips that provide us with 4 bits
of data every 100 ns (remember cycle time), a cache �ll of a 16-byte line takes 1600 ns.
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Figure 3-6: Narrow memory system

Figure 2.6

One way to make the cache-line �ll operation faster is to �widen� the memory system as shown in
Figure 2.7 (Figure 3-7: Wide memory system). Instead of having two rows of DRAMs, we create multiple
rows of DRAMs. Now on every 100-ns cycle, we get 32 contiguous bits, and our cache-line �lls are four times
faster.

Figure 3-7: Wide memory system

Figure 2.7
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We can improve the performance of a memory system by increasing the width of the memory system up
to the length of the cache line, at which time we can �ll the entire line in a single memory cycle. On the
SGI Power Challenge series of systems, the memory width is 256 bits. The downside of a wider memory
system is that DRAMs must be added in multiples. In many modern workstations and personal computers,
memory is expanded in the form of single inline memory modules (SIMMs). SIMMs currently are either
30-, 72-, or 168-pin modules, each of which is made up of several DRAM chips ready to be installed into a
memory sub-system.

2.7.1.3 Bypassing Cache

It's interesting that we have spent nearly an entire chapter on how great a cache is for high performance
computers, and now we are going to bypass the cache to improve performance. As mentioned earlier,
some types of processing result in non-unit strides (or bouncing around) through memory. These types
of memory reference patterns bring out the worst-case behavior in cache-based architectures. It is these
reference patterns that see improved performance by bypassing the cache. Inability to support these types
of computations remains an area where traditional supercomputers can signi�cantly outperform high-speed
RISC processors. For this reason, RISC processors that are serious about number crunching may have special
instructions that bypass data cache memory; the data are transferred directly between the processor and
the main memory system.14 In Figure 2.8 (Figure 3-8: Bypassing cache) we have four banks of SIMMs that
can do cache �lls at 128 bits per 100 ns memory cycle. Remember that the data is available after 50 ns but
we can't get more data until the DRAMs refresh 50�60 ns later. However, if we are doing 32-bit non-unit-
stride loads and have the capability to bypass cache, each load will be satis�ed from one of the four SIMMs
in 50 ns. While that SIMM refreshed, another load can occur from any of the other three SIMMs in 50 ns.
In a random mix of non-unit loads there is a 75% chance that the next load will fall on a �fresh� DRAM. If
the load falls on a bank while it is refreshing, it simply has to wait until the refresh completes.

A further advantage of bypassing cache is that the data doesn't need to be moved through the SRAM
cache. This operation can add from 10�50 ns to the load time for a single word. This also avoids invalidating
the contents of an entire cache line in the cache.

Adding cache bypass, increasing memory-system widths, and adding banks increases the cost of a memory
system. Computer-system vendors make an economic choice as to how many of these techniques they need
to apply to get su�cient performance for their particular processor and system. Hence, as processor speed
increases, vendors must add more of these memory system features to their commodity systems to maintain
a balance between processor and memory-system speed.

14By the way, most machines have uncached memory spaces for process synchronization and I/O device registers. However,
memory references to these locations bypass the cache because of the address chosen, not necessarily because of the instruction
chosen.
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Figure 3-8: Bypassing cache

Figure 2.8

2.7.1.4 Interleaved and Pipelined Memory Systems

Vector supercomputers, such as the CRAY Y/MP and the Convex C3, are machines that depend on multi-
banked memory systems for performance. The C3, in particular, has a memory system with up to 256-way
interleaving. Each interleave (or bank) is 64 bits wide. This is an expensive memory system to build, but it
has some very nice performance characteristics. Having a large number of banks helps to reduce the chances
of repeated access to the same memory bank. If you do hit the same bank twice in a row, however, the
penalty is a delay of nearly 300 ns � a long time for a machine with a clock speed of 16 ns. So when things
go well, they go very well.

However, having a large number of banks alone is not su�cient to feed a 16-ns processor using 50 ns
DRAM. In addition to interleaving, the memory subsystem also needs to be pipelined. That is, the CPU
must begin the second, third, and fourth load before the CPU has received the results of the �rst load as
shown in Figure 2.9 (Figure 3-9: Multibanked memory system). Then each time it receives the results from
bank �n,� it must start the load from bank �n+4� to keep the pipeline fed. This way, after a brief startup
delay, loads complete every 16 ns and so the memory system appears to operate at the clock rate of the
CPU. This pipelined memory approach is facilitated by the 128-element vector registers in the C3 processor.

Using gather/scatter hardware, non-unit-stride operations can also be pipelined. The only di�erence for
non-unit-stride operations is that the banks are not accessed in sequential order. With a random pattern
of memory references, it's possible to reaccess a memory bank before it has completely refreshed from a
previous access. This is called a bank stall.
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Figure 3-9: Multibanked memory system

Figure 2.9

Di�erent access patterns are subject to bank stalls of varying severity. For instance, accesses to every
fourth word in an eight-bank memory system would also be subject to bank stalls, though the recovery would
occur sooner. References to every second word might not experience bank stalls at all; each bank may have
recovered by the time its next reference comes around; it depends on the relative speeds of the processor
and memory system. Irregular access patterns are sure to encounter some bank stalls.

In addition to the bank stall hazard, single-word references made directly to a multibanked memory
system carry a greater latency than those of (successfully) cached memory accesses. This is because references
are going out to memory that is slower than cache, and there may be additional address translation steps
as well. However, banked memory references are pipelined. As long as references are started well enough in
advance, several pipelined, multibanked references can be in �ight at one time, giving you good throughput.

The CDC-205 system performed vector operations in a memory-to-memory fashion using a set of explicit
memory pipelines. This system had superior performance for very long unit-stride vector computations. A
single instruction could perform 65,000 computations using three memory pipes.

2.7.1.5 Software Managed Caches

Here's an interesting thought: if a vector processor can plan far enough in advance to start a memory pipe,
why can't a RISC processor start a cache-�ll before it really needs the data in those same situations? In
a way, this is priming the cache to hide the latency of the cache-�ll. If this could be done far enough in
advance, it would appear that all memory references would operate at the speed of the cache.

This concept is called prefetching and it is supported using a special prefetch instruction available on
many RISC processors. A prefetch instruction operates just like a standard load instruction, except that
the processor doesn't wait for the cache to �ll before the instruction completes. The idea is to prefetch far
enough ahead of the computation to have the data ready in cache by the time the actual computation occurs.
The following is an example of how this might be used:
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DO I=1,1000000,8

PREFETCH(ARR(I+8))

DO J=0,7

SUM=SUM+ARR(I+J)

END DO

END DO

This is not the actual FORTRAN. Prefetching is usually done in the assembly code generated by the compiler
when it detects that you are stepping through the array using a �xed stride. The compiler typically estimate
how far ahead you should be prefetching. In the above example, if the cache-�lls were particularly slow, the
value 8 in I+8 could be changed to 16 or 32 while the other values changed accordingly.

In a processor that could only issue one instruction per cycle, there might be no payback to a prefetch
instruction; it would take up valuable time in the instruction stream in exchange for an uncertain bene�t.
On a superscalar processor, however, a cache hint could be mixed in with the rest of the instruction stream
and issued alongside other, real instructions. If it saved your program from su�ering extra cache misses, it
would be worth having.

2.7.1.6 Post-RISC E�ects on Memory References

Memory operations typically access the memory during the execute phase of the pipeline on a RISC processor.
On the post-RISC processor, things are no di�erent than on a RISC processor except that many loads can
be half �nished at any given moment. On some current processors, up to 28 memory operations may be
active with 10 waiting for o�-chip memory to arrive. This is an excellent way to compensate for slow memory
latency compared to the CPU speed. Consider the following loop:

LOADI R6,10000 Set the Iterations

LOADI R5,0 Set the index variable

LOOP: LOAD R1,R2(R5) Load a value from memory

INCR R1 Add one to R1

STORE R1,R3(R5) Store the incremented value back to memory

INCR R5 Add one to R5

COMPARE R5,R6 Check for loop termination

BLT LOOP Branch if R5 < R6 back to LOOP

In this example, assume that it take 50 cycles to access memory. When the fetch/ decode puts the �rst
load into the instruction reorder bu�er (IRB), the load starts on the next cycle and then is suspended in the
execute phase. However, the rest of the instructions are in the IRB. The INCR R1 must wait for the load
and the STORE must also wait. However, by using a rename register, the INCR R5, COMPARE, and BLT
can all be computed, and the fetch/decode goes up to the top of the loop and sends another load into the
IRB for the next memory location that will have to wait. This looping continues until about 10 iterations of
the loop are in the IRB. Then the �rst load actually shows up from memory and the INCR R1 and STORE
from the �rst iteration begins executing. Of course the store takes a while, but about that time the second
load �nishes, so there is more work to do and so on. . .

Like many aspects of computing, the post-RISC architecture, with its out-of-order and speculative execu-
tion, optimizes memory references. The post-RISC processor dynamically unrolls loops at execution time to
compensate for memory subsystem delay. Assuming a pipelined multibanked memory system that can have
multiple memory operations started before any complete (the HP PA-8000 can have 10 o�- chip memory op-
erations in �ight at one time), the processor continues to dispatch memory operations until those operations
begin to complete.
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Unlike a vector processor or a prefetch instruction, the post-RISC processor does not need to anticipate
the precise pattern of memory references so it can carefully control the memory subsystem. As a result, the
post-RISC processor can achieve peak performance in a far-wider range of code sequences than either vector
processors or in-order RISC processors with prefetch capability.

This implicit tolerance to memory latency makes the post-RISC processors ideal for use in the scalable
shared-memory processors of the future, where the memory hierarchy will become even more complex than
current processors with three levels of cache and a main memory.

Unfortunately, the one code segment that doesn't bene�t signi�cantly from the post-RISC architecture is
the linked-list traversal. This is because the next address is never known until the previous load is completed
so all loads are fundamentally serialized.

2.7.1.7 Dynamic RAM Technology Trends

Much of the techniques in this section have focused on how to deal with the imperfections of the dynamic
RAM chip (although when your clock rate hits 300�600 MHz or 3�2 ns, even SRAM starts to look pretty
slow). It's clear that the demand for more and more RAM will continue to increase, and gigabits and more
DRAM will �t on a single chip. Because of this, signi�cant work is underway to make new super-DRAMs
faster and more tuned to the extremely fast processors of the present and the future. Some of the technologies
are relatively straightforward, and others require a major redesign of the way that processors and memories
are manufactured.

Some DRAM improvements include:

• Fast page mode DRAM
• Extended data out RAM (EDO RAM)
• Synchronous DRAM (SDRAM)
• RAMBUS
• Cached DRAM (CDRAM)

Fast page mode DRAM saves time by allowing a mode in which the entire address doesn't have to be re-
clocked into the chip for each memory operation. Instead, there is an assumption that the memory will be
accessed sequentially (as in a cache-line �ll), and only the low-order bits of the address are clocked in for
successive reads or writes.

EDO RAM is a modi�cation to output bu�ering on page mode RAM that allows it to operate roughly
twice as quickly for operations other than refresh.

Synchronous DRAM is synchronized using an external clock that allows the cache and the DRAM to
coordinate their operations. Also, SDRAM can pipeline the retrieval of multiple memory bits to improve
overall throughput.

RAMBUS is a proprietary technology capable of 500 MB/sec data transfer. RAMBUS uses signi�cant
logic within the chip and operates at higher power levels than typical DRAM.

Cached DRAM combines a SRAM cache on the same chip as the DRAM. This tightly couples the
SRAM and DRAM and provides performance similar to SRAM devices with all the limitations of any cache
architecture. One advantage of the CDRAM approach is that the amount of cache is increased as the amount
of DRAM is increased. Also when dealing with memory systems with a large number of interleaves, each
interleave has its own SRAM to reduce latency, assuming the data requested was in the SRAM.

An even more advanced approach is to integrate the processor, SRAM, and DRAM onto a single chip
clocked at say 5 GHz, containing 128 MB of data. Understandably, there is a wide range of technical
problems to solve before this type of component is widely available for $200 � but it's not out of the
question. The manufacturing processes for DRAM and processors are already beginning to converge in some
ways (RAMBUS). The biggest performance problem when we have this type of system will be, �What to do
if you need 160 MB?�
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2.8 Closing Notes15

2.8.1 Closing Notes

They say that the computer of the future will be a good memory system that just happens to have a CPU
attached. As high performance microprocessor systems take over as the high performance computing engines,
the problem of a cache-based memory system that uses DRAM for main memory must be solved. There
are many architecture and technology e�orts underway to transform workstation and personal computer
memories to be as capable as supercomputer memories.

As CPU speed increases faster than memory speed, you will need the techniques in this book. Also, as
you move into multiple processors, memory problems don't get better; usually they get worse. With many
hungry processors always ready for more data, a memory subsystem can become extremely strained.

With just a little skill, we can often restructure memory accesses so that they play to your memory
system's strengths instead of its weaknesses.

2.9 Exercises16

2.9.1 Exercises

Exercise 2.1
The following code segment traverses a pointer chain:

while ((p = (char *) *p) != NULL);

How will such a code interact with the cache if all the references fall within a small portion of mem-
ory? How will the code interact with the cache if references are stretched across many megabytes?

Exercise 2.2
How would the code in Exercise 2.1 behave on a multibanked memory system that has no cache?

Exercise 2.3
A long time ago, people regularly wrote self-modifying code � programs that wrote into instruction
memory and changed their own behavior. What would be the implications of self-modifying code
on a machine with a Harvard memory architecture?

Exercise 2.4
Assume a memory architecture with an L1 cache speed of 10 ns, L2 speed of 30 ns, and memory
speed of 200 ns. Compare the average memory system performance with (1) L1 80%, L2 10%, and
memory 10%; and (2) L1 85% and memory 15%.

Exercise 2.5
On a computer system, run loops that process arrays of varying length from 16 to 16 million:

ARRAY(I) = ARRAY(I) + 3

How does the number of additions per second change as the array length changes? Experiment
with REAL*4, REAL*8, INTEGER*4, and INTEGER*8.

Which has more signi�cant impact on performance: larger array elements or integer versus
�oating-point? Try this on a range of di�erent computers.

Exercise 2.6
Create a two-dimensional array of 1024×1024. Loop through the array with rows as the inner loop
and then again with columns as the inner loop. Perform a simple operation on each element. Do
the loops perform di�erently? Why? Experiment with di�erent dimensions for the array and see
the performance impact.

15This content is available online at <http://cnx.org/content/m32690/1.1/>.
16This content is available online at <http://cnx.org/content/m32698/1.1/>.
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Exercise 2.7
Write a program that repeatedly executes timed loops of di�erent sizes to determine the cache size
for your system.
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Chapter 3

Floating-Point Numbers

3.1 Introduction1

3.1.1 Floating-Point Numbers

Often when we want to make a point that nothing is sacred, we say, �one plus one does not equal two.� This
is designed to shock us and attack our fundamental assumptions about the nature of the universe. Well, in
this chapter on �oating- point numbers, we will learn that �0.1+0.1 does not always equal 0.2� when we use
�oating-point numbers for computations.

In this chapter we explore the limitations of �oating-point numbers and how you as a programmer can
write code to minimize the e�ect of these limitations. This chapter is just a brief introduction to a signi�cant
�eld of mathematics called numerical analysis.

3.2 Reality2

3.2.1 Reality

The real world is full of real numbers. Quantities such as distances, velocities, masses, angles, and other
quantities are all real numbers.3 A wonderful property of real numbers is that they have unlimited accuracy.
For example, when considering the ratio of the circumference of a circle to its diameter, we arrive at a value
of 3.141592.... The decimal value for pi does not terminate. Because real numbers have unlimited accuracy,
even though we can't write it down, pi is still a real number. Some real numbers are rational numbers because
they can be represented as the ratio of two integers, such as 1/3. Not all real numbers are rational numbers.
Not surprisingly, those real numbers that aren't rational numbers are called irrational. You probably would
not want to start an argument with an irrational number unless you have a lot of free time on your hands.

Unfortunately, on a piece of paper, or in a computer, we don't have enough space to keep writing the
digits of pi. So what do we do? We decide that we only need so much accuracy and round real numbers to
a certain number of digits. For example, if we decide on four digits of accuracy, our approximation of pi is
3.142. Some state legislature attempted to pass a law that pi was to be three. While this is often cited as
evidence for the IQ of governmental entities, perhaps the legislature was just suggesting that we only need
one digit of accuracy for pi. Perhaps they foresaw the need to save precious memory space on computers
when representing real numbers.

1This content is available online at <http://cnx.org/content/m32739/1.1/>.
2This content is available online at <http://cnx.org/content/m32741/1.1/>.
3In high performance computing we often simulate the real world, so it is somewhat ironic that we use simulated real numbers

(�oating-point) in those simulations of the real world.
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3.3 Representation4

3.3.1 Representation

Given that we cannot perfectly represent real numbers on digital computers, we must come up with a
compromise that allows us to approximate real numbers.5 There are a number of di�erent ways that have
been used to represent real numbers. The challenge in selecting a representation is the trade-o� between
space and accuracy and the tradeo� between speed and accuracy. In the �eld of high performance computing
we generally expect our processors to produce a �oating- point result every 600-MHz clock cycle. It is pretty
clear that in most applications we aren't willing to drop this by a factor of 100 just for a little more accuracy.
Before we discuss the format used by most high performance computers, we discuss some alternative (albeit
slower) techniques for representing real numbers.

3.3.1.1 Binary Coded Decimal

In the earliest computers, one technique was to use binary coded decimal (BCD). In BCD, each base-10 digit
was stored in four bits. Numbers could be arbitrarily long with as much precision as there was memory:

123.45

0001 0010 0011 0100 0101

This format allows the programmer to choose the precision required for each variable. Unfortunately, it is
di�cult to build extremely high-speed hardware to perform arithmetic operations on these numbers. Because
each number may be far longer than 32 or 64 bits, they did not �t nicely in a register. Much of the �oating-
point operations for BCD were done using loops in microcode. Even with the �exibility of accuracy on BCD
representation, there was still a need to round real numbers to �t into a limited amount of space.

Another limitation of the BCD approach is that we store a value from 0�9 in a four-bit �eld. This �eld
is capable of storing values from 0�15 so some of the space is wasted.

3.3.1.2 Rational Numbers

One intriguing method of storing real numbers is to store them as rational numbers. To brie�y review
mathematics, rational numbers are the subset of real numbers that can be expressed as a ratio of integer
numbers. For example, 22/7 and 1/2 are rational numbers. Some rational numbers, such as 1/2 and 1/10,
have perfect representation as base-10 decimals, and others, such as 1/3 and 22/7, can only be expressed as
in�nite-length base-10 decimals. When using rational numbers, each real number is stored as two integer
numbers representing the numerator and denominator. The basic fractional arithmetic operations are used
for addition, subtraction, multiplication, and division, as shown in Figure 3.1 (Figure 4-1: Rational number
mathematics).

4This content is available online at <http://cnx.org/content/m32772/1.1/>.
5Interestingly, analog computers have an easier time representing real numbers. Imagine a �water- adding� analog computer

which consists of two glasses of water and an empty glass. The amount of water in the two glasses are perfectly represented
real numbers. By pouring the two glasses into a third, we are adding the two real numbers perfectly (unless we spill some),
and we wind up with a real number amount of water in the third glass. The problem with analog computers is knowing just
how much water is in the glasses when we are all done. It is also problematic to perform 600 million additions per second using
this technique without getting pretty wet. Try to resist the temptation to start an argument over whether quantum mechanics
would cause the real numbers to be rational numbers. And don't point out the fact that even digital computers are really
analog computers at their core. I am trying to keep the focus on �oating-point values, and you keep drifting away!
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Figure 4-1: Rational number mathematics

Figure 3.1

The limitation that occurs when using rational numbers to represent real numbers is that the size of the
numerators and denominators tends to grow. For each addition, a common denominator must be found. To
keep the numbers from becoming extremely large, during each operation, it is important to �nd the greatest
common divisor (GCD) to reduce fractions to their most compact representation. When the values grow
and there are no common divisors, either the large integer values must be stored using dynamic memory or
some form of approximation must be used, thus losing the primary advantage of rational numbers.

For mathematical packages such as Maple or Mathematica that need to produce exact results on smaller
data sets, the use of rational numbers to represent real numbers is at times a useful technique. The perfor-
mance and storage cost is less signi�cant than the need to produce exact results in some instances.

3.3.1.3 Fixed Point

If the desired number of decimal places is known in advance, it's possible to use �xed-point representation.
Using this technique, each real number is stored as a scaled integer. This solves the problem that base-10
fractions such as 0.1 or 0.01 cannot be perfectly represented as a base-2 fraction. If you multiply 110.77
by 100 and store it as a scaled integer 11077, you can perfectly represent the base-10 fractional part (0.77).
This approach can be used for values such as money, where the number of digits past the decimal point is
small and known.

However, just because all numbers can be accurately represented it doesn't mean there are not errors with
this format. When multiplying a �xed-point number by a fraction, you get digits that can't be represented
in a �xed-point format, so some form of rounding must be used. For example, if you have $125.87 in the
bank at 4% interest, your interest amount would be $5.0348. However, because your bank balance only has
two digits of accuracy, they only give you $5.03, resulting in a balance of $130.90. Of course you probably
have heard many stories of programmers getting rich depositing many of the remaining 0.0048 amounts into
their own account. My guess is that banks have probably �gured that one out by now, and the bank keeps
the money for itself. But it does make one wonder if they round or truncate in this type of calculation.6

6Perhaps banks round this instead of truncating, knowing that they will always make it up in teller machine fees.
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3.3.1.4 Mantissa/Exponent

The �oating-point format that is most prevalent in high performance computing is a variation on scienti�c
notation. In scienti�c notation the real number is represented using a mantissa, base, and exponent: 6.02 ×
1023.

The mantissa typically has some �xed number of places of accuracy. The mantissa can be represented in
base 2, base 16, or BCD. There is generally a limited range of exponents, and the exponent can be expressed
as a power of 2, 10, or 16.

The primary advantage of this representation is that it provides a wide overall range of values while using
a �xed-length storage representation. The primary limitation of this format is that the di�erence between
two successive values is not uniform. For example, assume that you can represent three base-10 digits,
and your exponent can range from �10 to 10. For numbers close to zero, the �distance� between successive
numbers is very small. For the number 1.72× 10−10, the next larger number is 1.73× 10−10. The distance
between these two �close� small numbers is 0.000000000001. For the number 6.33 × 1010, the next larger
number is 6.34× 1010. The distance between these �close� large numbers is 100 million.

In Figure 3.2 (Figure 4-2: Distance between successive �oating-point numbers), we use two base-2 digits
with an exponent ranging from �1 to 1.

Figure 4-2: Distance between successive �oating-point numbers

Figure 3.2

There are multiple equivalent representations of a number when using scienti�c notation:
6.00× 105

0.60× 106

0.06× 107

By convention, we shift the mantissa (adjust the exponent) until there is exactly one nonzero digit to the
left of the decimal point. When a number is expressed this way, it is said to be �normalized.� In the above
list, only 6.00 × 105 is normalized. Figure 3.3 (Figure 4-3: Normalized �oating-point numbers) shows how
some of the �oating-point numbers from Figure 3.2 (Figure 4-2: Distance between successive �oating-point
numbers) are not normalized.

While the mantissa/exponent has been the dominant �oating-point approach for high performance com-
puting, there were a wide variety of speci�c formats in use by computer vendors. Historically, each computer
vendor had their own particular format for �oating-point numbers. Because of this, a program executed on
several di�erent brands of computer would generally produce di�erent answers. This invariably led to heated
discussions about which system provided the right answer and which system(s) were generating meaningless
results.7

7Interestingly, there was an easy answer to the question for many programmers. Generally they trusted the results from the
computer they used to debug the code and dismissed the results from other computers as garbage.
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Figure 4-3: Normalized �oating-point numbers

Figure 3.3

When storing �oating-point numbers in digital computers, typically the mantissa is normalized, and then
the mantissa and exponent are converted to base-2 and packed into a 32- or 64-bit word. If more bits were
allocated to the exponent, the overall range of the format would be increased, and the number of digits of
accuracy would be decreased. Also the base of the exponent could be base-2 or base-16. Using 16 as the
base for the exponent increases the overall range of exponents, but because normalization must occur on
four-bit boundaries, the available digits of accuracy are reduced on the average. Later we will see how the
IEEE 754 standard for �oating-point format represents numbers.

3.4 E�ects of Floating-Point Representation8

3.4.1 E�ects of Floating-Point Representation

One problem with the mantissa/base/exponent representation is that not all base-10 numbers can be ex-
pressed perfectly as a base-2 number. For example, 1/2 and 0.25 can be represented perfectly as base-2
values, while 1/3 and 0.1 produce in�nitely repeating base-2 decimals. These values must be rounded to
be stored in the �oating-point format. With su�cient digits of precision, this generally is not a problem
for computations. However, it does lead to some anomalies where algebraic rules do not appear to apply.
Consider the following example:

REAL*4 X,Y

X = 0.1

Y = 0

DO I=1,10

Y = Y + X

ENDDO

IF ( Y .EQ. 1.0 ) THEN

PRINT *,'Algebra is truth'

ELSE

8This content is available online at <http://cnx.org/content/m32755/1.1/>.
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PRINT *,'Not here'

ENDIF

PRINT *,1.0-Y

END

At �rst glance, this appears simple enough. Mathematics tells us ten times 0.1 should be one. Unfortunately,
because 0.1 cannot be represented exactly as a base-2 decimal, it must be rounded. It ends up being rounded
down to the last bit. When ten of these slightly smaller numbers are added together, it does not quite add
up to 1.0. When X and Y are REAL*4, the di�erence is about 10-7, and when they are REAL*8, the di�erence
is about 10-16.

One possible method for comparing computed values to constants is to subtract the values and test to
see how close the two values become. For example, one can rewrite the test in the above code to be:

IF ( ABS(1.0-Y).LT. 1E-6) THEN

PRINT *,'Close enough for government work'

ELSE

PRINT *,'Not even close'

ENDIF

The type of the variables in question and the expected error in the computation that produces Y determines
the appropriate value used to declare that two values are close enough to be declared equal.

Another area where inexact representation becomes a problem is the fact that algebraic inverses do not
hold with all �oating-point numbers. For example, using REAL*4, the value (1.0/X) * X does not evaluate
to 1.0 for 135 values of X from one to 1000. This can be a problem when computing the inverse of a
matrix using LU-decomposition. LU-decomposition repeatedly does division, multiplication, addition, and
subtraction. If you do the straightforward LU-decomposition on a matrix with integer coe�cients that has an
integer solution, there is a pretty good chance you won't get the exact solution when you run your algorithm.
Discussing techniques for improving the accuracy of matrix inverse computation is best left to a numerical
analysis text.

3.5 More Algebra That Doesn't Work9

3.5.1 More Algebra That Doesn't Work

While the examples in the proceeding section focused on the limitations of multiplication and division,
addition and subtraction are not, by any means, perfect. Because of the limitation of the number of digits
of precision, certain additions or subtractions have no e�ect. Consider the following example using REAL*4

with 7 digits of precision:

X = 1.25E8

Y = X + 7.5E-3

IF ( X.EQ.Y ) THEN

PRINT *,'Am I nuts or what?'

9This content is available online at <http://cnx.org/content/m32754/1.1/>.
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ENDIF

While both of these numbers are precisely representable in �oating-point, adding them is problematic. Prior
to adding these numbers together, their decimal points must be aligned as in Figure 3.4 (Figure 4-4: Loss
of accuracy while aligning decimal points).

Figure 4-4: Loss of accuracy while aligning decimal points

Figure 3.4

Unfortunately, while we have computed the exact result, it cannot �t back into a REAL*4 variable (7
digits of accuracy) without truncating the 0.0075. So after the addition, the value in Y is exactly 1.25E8.
Even sadder, the addition could be performed millions of times, and the value for Y would still be 1.25E8.

Because of the limitation on precision, not all algebraic laws apply all the time. For instance, the answer
you obtain from X+Y will be the same as Y+X, as per the commutative law for addition. Whichever operand
you pick �rst, the operation yields the same result; they are mathematically equivalent. It also means that
you can choose either of the following two forms and get the same answer:

(X + Y) + Z

(Y + X) + Z

However, this is not equivalent:

(Y + Z) + X

The third version isn't equivalent to the �rst two because the order of the calculations has changed. Again, the
rearrangement is equivalent algebraically, but not computationally. By changing the order of the calculations,
we have taken advantage of the associativity of the operations; we have made an associative transformation

of the original code.
To understand why the order of the calculations matters, imagine that your computer can perform

arithmetic signi�cant to only �ve decimal places.
Also assume that the values of X, Y, and Z are .00005, .00005, and 1.0000, respectively. This means that:
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(X + Y) + Z = .00005 + .00005 + 1.0000

= .0001 + 1.0000 = 1.0001

but:

(Y + Z) + X = .00005 + 1.0000 + .00005

= 1.0000 + .00005 = 1.0000

The two versions give slightly di�erent answers. When adding Y+Z+X, the sum of the smaller numbers was
insigni�cant when added to the larger number. But when computing X+Y+Z, we add the two small numbers
�rst, and their combined sum is large enough to in�uence the �nal answer. For this reason, compilers
that rearrange operations for the sake of performance generally only do so after the user has requested
optimizations beyond the defaults.

For these reasons, the FORTRAN language is very strict about the exact order of evaluation of ex-
pressions. To be compliant, the compiler must ensure that the operations occur exactly as you express
them.10

For Kernighan and Ritchie C, the operator precedence rules are di�erent. Although the precedences
between operators are honored (i.e., * comes before +, and evaluation generally occurs left to right for
operators of equal precedence), the compiler is allowed to treat a few commutative operations (+, *, &, �
and |) as if they were fully associative, even if they are parenthesized. For instance, you might tell the C
compiler:

a = x + (y + z);

However, the C compiler is free to ignore you, and combine X, Y, and Z in any order it pleases.
Now armed with this knowledge, view the following harmless-looking code segment:

REAL*4 SUM,A(1000000)

SUM = 0.0

DO I=1,1000000

SUM = SUM + A(I)

ENDDO

Begins to look like a nightmare waiting to happen. The accuracy of this sum depends of the relative
magnitudes and order of the values in the array A. If we sort the array from smallest to largest and then
perform the additions, we have a more accurate value. There are other algorithms for computing the sum
of an array that reduce the error without requiring a full sort of the data. Consult a good textbook on
numerical analysis for the details on these algorithms.

If the range of magnitudes of the values in the array is relatively small, the straight- forward computation
of the sum is probably su�cient.

10Often even if you didn't mean it.
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3.6 Improving Accuracy Using Guard Digits11

3.6.1 Improving Accuracy Using Guard Digits

In this section we explore a technique to improve the precision of �oating-point computations without using
additional storage space for the �oating-point numbers.

Consider the following example of a base-10 system with �ve digits of accuracy performing the following
subtraction:

10.001 - 9.9993 = 0.0017

All of these values can be perfectly represented using our �oating-point format. However, if we only have
�ve digits of precision available while aligning the decimal points during the computation, the results end
up with signi�cant error as shown in Figure 3.5 (Figure 4-5: Need for guard digits ).

Figure 4-5: Need for guard digits

Figure 3.5

To perform this computation and round it correctly, we do not need to increase the number of signi�cant
digits for stored values. We do, however, need additional digits of precision while performing the computation.

The solution is to add extra guard digits which are maintained during the interim steps of the compu-
tation. In our case, if we maintained six digits of accuracy while aligning operands, and rounded before
normalizing and assigning the �nal value, we would get the proper result. The guard digits only need to be
present as part of the �oating-point execution unit in the CPU. It is not necessary to add guard digits to
the registers or to the values stored in memory.

It is not necessary to have an extremely large number of guard digits. At some point, the di�erence in
the magnitude between the operands becomes so great that lost digits do not a�ect the addition or rounding
results.

3.7 History of IEEE Floating-Point Format12

3.7.1 History of IEEE Floating-Point Format

Prior to the RISC microprocessor revolution, each vendor had their own �oating- point formats based on
their designers' views of the relative importance of range versus accuracy and speed versus accuracy. It was
not uncommon for one vendor to carefully analyze the limitations of another vendor's �oating-point format
and use this information to convince users that theirs was the only �accurate� �oating- point implementation.
In reality none of the formats was perfect. The formats were simply imperfect in di�erent ways.

11This content is available online at <http://cnx.org/content/m32744/1.1/>.
12This content is available online at <http://cnx.org/content/m32770/1.1/>.
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During the 1980s the Institute for Electrical and Electronics Engineers (IEEE) produced a standard for
the �oating-point format. The title of the standard is �IEEE 754-1985 Standard for Binary Floating-Point
Arithmetic.� This standard provided the precise de�nition of a �oating-point format and described the
operations on �oating-point values.

Because IEEE 754 was developed after a variety of �oating-point formats had been in use for quite some
time, the IEEE 754 working group had the bene�t of examining the existing �oating-point designs and
taking the strong points, and avoiding the mistakes in existing designs. The IEEE 754 speci�cation had
its beginnings in the design of the Intel i8087 �oating-point coprocessor. The i8087 �oating-point format
improved on the DEC VAX �oating-point format by adding a number of signi�cant features.

The near universal adoption of IEEE 754 �oating-point format has occurred over a 10-year time period.
The high performance computing vendors of the mid 1980s (Cray IBM, DEC, and Control Data) had their
own proprietary �oating-point formats that they had to continue supporting because of their installed user
base. They really had no choice but to continue to support their existing formats. In the mid to late
1980s the primary systems that supported the IEEE format were RISC workstations and some coprocessors
for microprocessors. Because the designers of these systems had no need to protect a proprietary �oating-
point format, they readily adopted the IEEE format. As RISC processors moved from general-purpose
integer computing to high performance �oating-point computing, the CPU designers found ways to make
IEEE �oating-point operations operate very quickly. In 10 years, the IEEE 754 has gone from a standard
for �oating-point coprocessors to the dominant �oating-point standard for all computers. Because of this
standard, we, the users, are the bene�ciaries of a portable �oating-point environment.

3.7.2 IEEE Floating-Point Standard

The IEEE 754 standard speci�ed a number of di�erent details of �oating-point operations, including:

• Storage formats
• Precise speci�cations of the results of operations
• Special values
• Speci�ed runtime behavior on illegal operations

Specifying the �oating-point format to this level of detail insures that when a computer system is compliant
with the standard, users can expect repeatable execution from one hardware platform to another when
operations are executed in the same order.

3.7.3 IEEE Storage Format

The two most common IEEE �oating-point formats in use are 32- and 64-bit numbers. Table 3.1: Table 4-1:
Parameters of IEEE 32- and 64-Bit Formats gives the general parameters of these data types.

Table 4-1: Parameters of IEEE 32- and 64-Bit Formats

IEEE75 FORTRAN C Bits Exponent Bits Mantissa Bits

Single REAL*4 �oat 32 8 24

Double REAL*8 double 64 11 53

Double-Extended REAL*10 long double >=80 >=15 >=64

Table 3.1

In FORTRAN, the 32-bit format is usually called REAL, and the 64-bit format is usually called DOUBLE.
However, some FORTRAN compilers double the sizes for these data types. For that reason, it is safest to
declare your FORTRAN variables as REAL*4 or REAL*8. The double-extended format is not as well supported



39

in compilers and hardware as the single- and double-precision formats. The bit arrangement for the single
and double formats are shown in Figure 3.6 (Figure 4-6: IEEE754 �oating-point formats).

Based on the storage layouts in Table 3.1: Table 4-1: Parameters of IEEE 32- and 64-Bit Formats, we
can derive the ranges and accuracy of these formats, as shown in Table 3.2: Table 4-2: Range and Accuracy
of IEEE 32- and 64-Bit Formats.

Figure 4-6: IEEE754 �oating-point formats

Figure 3.6

Table 4-2: Range and Accuracy of IEEE 32- and 64-Bit Formats

IEEE754 Minimum Normalized Number Largest Finite Number Base-10 Accuracy

Single 1.2E-38 3.4 E+38 6-9 digits

Double 2.2E-308 1.8 E+308 15-17 digits

Extended Double 3.4E-4932 1.2 E+4932 18-21 digits

Table 3.2

3.7.3.1 Converting from Base-10 to IEEE Internal Format

We now examine how a 32-bit �oating-point number is stored. The high-order bit is the sign of the number.
Numbers are stored in a sign-magnitude format (i.e., not 2's - complement). The exponent is stored in the
8-bit �eld biased by adding 127 to the exponent. This results in an exponent ranging from -126 through
+127.

The mantissa is converted into base-2 and normalized so that there is one nonzero digit to the left of
the binary place, adjusting the exponent as necessary. The digits to the right of the binary point are then
stored in the low-order 23 bits of the word. Because all numbers are normalized, there is no need to store
the leading 1.



40 CHAPTER 3. FLOATING-POINT NUMBERS

This gives a free extra bit of precision. Because this bit is dropped, it's no longer proper to refer to the
stored value as the mantissa. In IEEE parlance, this mantissa minus its leading digit is called the signi�cand.

Figure 3.7 (Figure 4-7: Converting from base-10 to IEEE 32-bit format) shows an example conversion
from base-10 to IEEE 32-bit format.

Figure 4-7: Converting from base-10 to IEEE 32-bit format

Figure 3.7

The 64-bit format is similar, except the exponent is 11 bits long, biased by adding 1023 to the exponent,
and the signi�cand is 54 bits long.

3.8 IEEE Operations13

3.8.1 IEEE Operations

The IEEE standard speci�es how computations are to be performed on �oating- point values on the following
operations:

• Addition
• Subtraction
• Multiplication
• Division
• Square root
• Remainder (modulo)
• Conversion to/from integer
• Conversion to/from printed base-10

These operations are speci�ed in a machine-independent manner, giving �exibility to the CPU designers to
implement the operations as e�ciently as possible while maintaining compliance with the standard. During
operations, the IEEE standard requires the maintenance of two guard digits and a sticky bit for intermediate
values. The guard digits above and the sticky bit are used to indicate if any of the bits beyond the second
guard digit is nonzero.

13This content is available online at <http://cnx.org/content/m32756/1.1/>.
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Figure 4-8: Computation using guard and sticky bits

Figure 3.8

In Figure 3.8 (Figure 4-8: Computation using guard and sticky bits), we have �ve bits of normal precision,
two guard digits, and a sticky bit. Guard bits simply operate as normal bits � as if the signi�cand were 25
bits. Guard bits participate in rounding as the extended operands are added. The sticky bit is set to 1 if any
of the bits beyond the guard bits is nonzero in either operand.14 Once the extended sum is computed, it is
rounded so that the value stored in memory is the closest possible value to the extended sum including the
guard digits. Table 3.3: Table 4-3: Extended Sums and Their Stored Values shows all eight possible values
of the two guard digits and the sticky bit and the resulting stored value with an explanation as to why.

14If you are somewhat hardware-inclined and you think about it for a moment, you will soon come up with a way to properly
maintain the sticky bit without ever computing the full �in�nite precision sum.� You just have to keep track as things get
shifted around.
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Table 4-3: Extended Sums and Their Stored Values

Extended Sum Stored Value Why

1.0100 000 1.0100 Truncated based on guard digits

1.0100 001 1.0100 Truncated based on guard digits

1.0100 010 1.0100 Rounded down based on guard digits

1.0100 011 1.0100 Rounded down based on guard digits

1.0100 100 1.0100 Rounded down based on sticky bit

1.0100 101 1.0101 Rounded up based on sticky bit

1.0100 110 1.0101 Rounded up based on guard digits

1.0100 111 1.0101 Rounded up based on guard digits

Table 3.3

The �rst priority is to check the guard digits. Never forget that the sticky bit is just a hint, not a real
digit. So if we can make a decision without looking at the sticky bit, that is good. The only decision we
are making is to round the last storable bit up or down. When that stored value is retrieved for the next
computation, its guard digits are set to zeros. It is sometimes helpful to think of the stored value as having
the guard digits, but set to zero.

Two guard digits and the sticky bit in the IEEE format insures that operations yield the same rounding
as if the intermediate result were computed using unlimited precision and then rounded to �t within the
limits of precision of the �nal computed value.

At this point, you might be asking, �Why do I care about this minutiae?� At some level, unless you are a
hardware designer, you don't care. But when you examine details like this, you can be assured of one thing:
when they developed the IEEE �oating-point standard, they looked at the details very carefully. The goal
was to produce the most accurate possible �oating-point standard within the constraints of a �xed-length
32- or 64-bit format. Because they did such a good job, it's one less thing you have to worry about. Besides,
this stu� makes great exam questions.

3.9 Special Values15

3.9.1 Special Values

In addition to specifying the results of operations on numeric data, the IEEE standard also speci�es the
precise behavior on unde�ned operations such as dividing by zero. These results are indicated using several
special values. These values are bit patterns that are stored in variables that are checked before operations
are performed. The IEEE operations are all de�ned on these special values in addition to the normal numeric
values. Table 3.4: Table 4-4: Special Values for an IEEE 32-Bit Number summarizes the special values for
a 32-bit IEEE �oating-point number.

15This content is available online at <http://cnx.org/content/m32758/1.1/>.
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Table 4-4: Special Values for an IEEE 32-Bit Number

Special Value Exponent Signi�cand

+ or � 0 00000000 0

Denormalized number 00000000 nonzero

NaN (Not a Number) 11111111 nonzero

+ or � In�nity 11111111 0

Table 3.4

The value of the exponent and signi�cand determines which type of special value this particular �oating-
point number represents. Zero is designed such that integer zero and �oating-point zero are the same bit
pattern.

Denormalized numbers can occur at some point as a number continues to get smaller, and the exponent
has reached the minimum value. We could declare that minimum to be the smallest representable value.
However, with denormalized values, we can continue by setting the exponent bits to zero and shifting the
signi�cand bits to the right, �rst adding the leading �1� that was dropped, then continuing to add leading
zeros to indicate even smaller values. At some point the last nonzero digit is shifted o� to the right, and the
value becomes zero. This approach is called gradual under�ow where the value keeps approaching zero and
then eventually becomes zero. Not all implementations support denormalized numbers in hardware; they
might trap to a software routine to handle these numbers at a signi�cant performance cost.

At the top end of the biased exponent value, an exponent of all 1s can represent the Not a Number

(NaN) value or in�nity. In�nity occurs in computations roughly according to the principles of mathematics.
If you continue to increase the magnitude of a number beyond the range of the �oating-point format, once
the range has been exceeded, the value becomes in�nity. Once a value is in�nity, further additions won't
increase it, and subtractions won't decrease it. You can also produce the value in�nity by dividing a nonzero
value by zero. If you divide a nonzero value by in�nity, you get zero as a result.

The NaN value indicates a number that is not mathematically de�ned. You can generate a NaN by
dividing zero by zero, dividing in�nity by in�nity, or taking the square root of -1. The di�erence between
in�nity and NaN is that the NaN value has a nonzero signi�cand. The NaN value is very sticky. Any
operation that has a NaN as one of its inputs always produces a NaN result.

3.10 Exceptions and Traps16

3.10.1 Exceptions and Traps

In addition to de�ning the results of computations that aren't mathematically de�ned, the IEEE standard
provides programmers with the ability to detect when these special values are being produced. This way,
programmers can write their code without adding extensive IF tests throughout the code checking for the
magnitude of values. Instead they can register a trap handler for an event such as under�ow and handle the
event when it occurs. The exceptions de�ned by the IEEE standard include:

• Over�ow to in�nity
• Under�ow to zero
• Division by zero
• Invalid operation
• Inexact operation

16This content is available online at <http://cnx.org/content/m32760/1.1/>.
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According to the standard, these traps are under the control of the user. In most cases, the compiler runtime
library manages these traps under the direction from the user through compiler �ags or runtime library calls.
Traps generally have signi�cant overhead compared to a single �oating-point instruction, and if a program
is continually executing trap code, it can signi�cantly impact performance.

In some cases it's appropriate to ignore traps on certain operations. A commonly ignored trap is the
under�ow trap. In many iterative programs, it's quite natural for a value to keep reducing to the point where
it �disappears.� Depending on the application, this may or may not be an error situation so this exception
can be safely ignored.

If you run a program and then it terminates, you see a message such as:

Overflow handler called 10,000,000 times

It probably means that you need to �gure out why your code is exceeding the range of the �oating-point
format. It probably also means that your code is executing more slowly because it is spending too much
time in its error handlers.

3.11 Compiler Issues17

3.11.1 Compiler Issues

The IEEE 754 �oating-point standard does a good job describing how �oating- point operations are to be
performed. However, we generally don't write assembly language programs. When we write in a higher-level
language such as FORTRAN, it's sometimes di�cult to get the compiler to generate the assembly language
you need for your application. The problems fall into two categories:

• The compiler is too conservative in trying to generate IEEE-compliant code and produces code that
doesn't operate at the peak speed of the processor. On some processors, to fully support gradual under-
�ow, extra instructions must be generated for certain instructions. If your code will never under�ow,
these instructions are unnecessary overhead.

• The optimizer takes liberties rewriting your code to improve its performance, eliminating some neces-
sary steps. For example, if you have the following code:

Z = X + 500

Y = Z - 200

The optimizer may replace it with Y = X + 300. However, in the case of a value for X that is close to
over�ow, the two sequences may not produce the same result.

Sometimes a user prefers �fast� code that loosely conforms to the IEEE standard, and at other times the
user will be writing a numerical library routine and need total control over each �oating-point operation.
Compilers have a challenge supporting the needs of both of these types of users. Because of the nature of
the high performance computing market and benchmarks, often the �fast and loose� approach prevails in
many compilers.

17This content is available online at <http://cnx.org/content/m32762/1.1/>.
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3.12 Closing Notes18

3.12.1 Closing Notes

While this is a relatively long chapter with a lot of technical detail, it does not even begin to scratch the
surface of the IEEE �oating-point format or the entire �eld of numerical analysis. We as programmers must
be careful about the accuracy of our programs, lest the results become meaningless. Here are a few basic
rules to get you started:

• Look for compiler options that relax or enforce strict IEEE compliance and choose the appropriate
option for your program. You may even want to change these options for di�erent portions of your
program.

• Use REAL*8 for computations unless you are sure REAL*4 has su�cient precision. Given that REAL*4
has roughly 7 digits of precision, if the bottom digits become meaningless due to rounding and compu-
tations, you are in some danger of seeing the e�ect of the errors in your results. REAL*8 with 13 digits
makes this much less likely to happen.

• Be aware of the relative magnitude of numbers when you are performing additions.
• When summing up numbers, if there is a wide range, sum from smallest to largest.
• Perform multiplications before divisions whenever possible.
• When performing a comparison with a computed value, check to see if the values are �close� rather

than identical.
• Make sure that you are not performing any unnecessary type conversions during the critical portions

of your code.

An excellent reference on �oating-point issues and the IEEE format is �What Every Computer Scientist
Should Know About Floating-Point Arithmetic,� written by David Goldberg, in ACM Computing Surveys
magazine (March 1991). This article gives examples of the most common problems with �oating-point and
outlines the solutions. It also covers the IEEE �oating-point format very thoroughly. I also recommend
you consult Dr. William Kahan's home page (http://www.cs.berkeley.edu/∼wkahan/19 ) for some excellent
materials on the IEEE format and challenges using �oating-point arithmetic. Dr. Kahan was one of the
original designers of the Intel i8087 and the IEEE 754 �oating-point format.

3.13 Exercises20

3.13.1 Exercises

Exercise 3.1
Run the following code to count the number of inverses that are not perfectly accurate:

REAL*4 X,Y,Z

INTEGER I

I = 0

DO X=1.0,1000.0,1.0

Y = 1.0 / X

Z = Y * X

IF ( Z .NE. 1.0 ) THEN

18This content is available online at <http://cnx.org/content/m32768/1.1/>.
19http://www.cs.berkeley.edu/∼wkahan/
20This content is available online at <http://cnx.org/content/m32765/1.1/>.
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I = I + 1

ENDIF

ENDDO

PRINT *,'Found ',I

END

Exercise 3.2
Change the type of the variables to REAL*8 and repeat. Make sure to keep the optimization at a
su�ciently low level (-00) to keep the compiler from eliminating the computations.

Exercise 3.3
Write a program to determine the number of digits of precision for REAL*4 and REAL*8.

Exercise 3.4
Write a program to demonstrate how summing an array forward to backward and backward to
forward can yield a di�erent result.

Exercise 3.5
Assuming your compiler supports varying levels of IEEE compliance, take a signi�cant computa-
tional code and test its overall performance under the various IEEE compliance options. Do the
results of the program change?



Chapter 4

Understanding Parallelism

4.1 Introduction1

4.1.1 Understanding Parallelism

In a sense, we have been talking about parallelism from the beginning of the book. Instead of calling it
�parallelism,� we have been using words like �pipelined,� �superscalar,� and �compiler �exibility.� As we
move into programming on multiprocessors, we must increase our understanding of parallelism in order to
understand how to e�ectively program these systems. In short, as we gain more parallel resources, we need
to �nd more parallelism in our code.

When we talk of parallelism, we need to understand the concept of granularity. The granularity of
parallelism indicates the size of the computations that are being performed at the same time between
synchronizations. Some examples of parallelism in order of increasing grain size are:

• When performing a 32-bit integer addition, using a carry lookahead adder, you can partially add bits
0 and 1 at the same time as bits 2 and 3.

• On a pipelined processor, while decoding one instruction, you can fetch the next instruction.
• On a two-way superscalar processor, you can execute any combination of an integer and a �oating-point

instruction in a single cycle.
• On a multiprocessor, you can divide the iterations of a loop among the four processors of the system.
• You can split a large array across four workstations attached to a network. Each workstation can

operate on its local information and then exchange boundary values at the end of each time step.

In this chapter, we start at instruction-level parallelism (pipelined and superscalar) and move toward thread-
level parallelism, which is what we need for multiprocessor systems. It is important to note that the di�erent
levels of parallelism are generally not in con�ict. Increasing thread parallelism at a coarser grain size often
exposes more �ne-grained parallelism.

The following is a loop that has plenty of parallelism:

DO I=1,16000

A(I) = B(I) * 3.14159

ENDDO

1This content is available online at <http://cnx.org/content/m32775/1.1/>.
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We have expressed the loop in a way that would imply that A(1) must be computed �rst, followed by
A(2), and so on. However, once the loop was completed, it would not have mattered if A(16000), were
computed �rst followed by A(15999), and so on. The loop could have computed the even values of I and
then computed the odd values of I. It would not even make a di�erence if all 16,000 of the iterations were
computed simultaneously using a 16,000-way superscalar processor.2 If the compiler has �exibility in the
order in which it can execute the instructions that make up your program, it can execute those instructions
simultaneously when parallel hardware is available.

One technique that computer scientists use to formally analyze the potential parallelism in an algorithm
is to characterize how quickly it would execute with an �in�nite-way� superscalar processor.

Not all loops contain as much parallelism as this simple loop. We need to identify the things that limit
the parallelism in our codes and remove them whenever possible. In previous chapters we have already
looked at removing clutter and rewriting loops to simplify the body of the loop.

This chapter also supplements Chapter 5, What a Compiler Does, in many ways. We looked at the
mechanics of compiling code, all of which apply here, but we didn't answer all of the �whys.� Basic block
analysis techniques form the basis for the work the compiler does when looking for more parallelism. Looking
at two pieces of data, instructions, or data and instructions, a modern compiler asks the question, �Do these
things depend on each other?� The three possible answers are yes, no, and we don't know. The third answer
is e�ectively the same as a yes, because a compiler has to be conservative whenever it is unsure whether it
is safe to tweak the ordering of instructions.

Helping the compiler recognize parallelism is one of the basic approaches specialists take in tuning code.
A slight rewording of a loop or some supplementary information supplied to the compiler can change a �we
don't know� answer into an opportunity for parallelism. To be certain, there are other facets to tuning
as well, such as optimizing memory access patterns so that they best suit the hardware, or recasting an
algorithm. And there is no single best approach to every problem; any tuning e�ort has to be a combination
of techniques.

4.2 Dependencies3

4.2.1 Dependencies

Imagine a symphony orchestra where each musician plays without regard to the conductor or the other
musicians. At the �rst tap of the conductor's baton, each musician goes through all of his or her sheet
music. Some �nish far ahead of others, leave the stage, and go home. The cacophony wouldn't resemble
music (come to think of it, it would resemble experimental jazz) because it would be totally uncoordinated.
Of course this isn't how music is played. A computer program, like a musical piece, is woven on a fabric
that unfolds in time (though perhaps woven more loosely). Certain things must happen before or along with
others, and there is a rate to the whole process.

With computer programs, whenever event A must occur before event B can, we say that B is dependent
on A. We call the relationship between them a dependency. Sometimes dependencies exist because of
calculations or memory operations; we call these data dependencies. Other times, we are waiting for a
branch or do-loop exit to take place; this is called a control dependency. Each is present in every program
to varying degrees. The goal is to eliminate as many dependencies as possible. Rearranging a program so
that two chunks of the computation are less dependent exposes parallelism, or opportunities to do several
things at once.

2Interestingly, this is not as far-fetched as it might seem. On a single instruction multiple data (SIMD) computer such as
the Connection CM-2 with 16,384 processors, it would take three instruction cycles to process this entire loop. See Chapter 12,
Large-Scale Parallel Computing, for more details on this type of architecture.

3This content is available online at <http://cnx.org/content/m32777/1.1/>.
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4.2.1.1 Control Dependencies

Just as variable assignments can depend on other assignments, a variable's value can also depend on the
�ow of control within the program. For instance, an assignment within an if-statement can occur only if
the conditional evaluates to true. The same can be said of an assignment within a loop. If the loop is never
entered, no statements inside the loop are executed.

When calculations occur as a consequence of the �ow of control, we say there is a control dependency, as
in the code below and shown graphically in Figure 4.1 (Figure 9-1: Control dependency). The assignment
located inside the block-if may or may not be executed, depending on the outcome of the test X .NE. 0.

In other words, the value of Y depends on the �ow of control in the code around it. Again, this may sound
to you like a concern for compiler designers, not programmers, and that's mostly true. But there are times
when you might want to move control-dependent instructions around to get expensive calculations out of the
way (provided your compiler isn't smart enough to do it for you). For example, say that Figure 4.2 (Figure
9-2: A little section of your program) represents a little section of your program. Flow of control enters at
the top and goes through two branch decisions. Furthermore, say that there is a square root operation at
the entry point, and that the �ow of control almost always goes from the top, down to the leg containing
the statement A=0.0. This means that the results of the calculation A=SQRT(B) are almost always discarded
because A gets a new value of 0.0 each time through. A square root operation is always �expensive� because
it takes a lot of time to execute. The trouble is that you can't just get rid of it; occasionally it's needed.
However, you could move it out of the way and continue to observe the control dependencies by making
two copies of the square root operation along the less traveled branches, as shown in Figure 4.3 (Figure 9-3:
Expensive operation moved so that it's rarely executed). This way the SQRT would execute only along those
paths where it was actually needed.

Figure 9-1: Control dependency

Figure 4.1
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Figure 9-2: A little section of your program

Figure 4.2

This kind of instruction scheduling will be appearing in compilers (and even hardware) more and more
as time goes on. A variation on this technique is to calculate results that might be needed at times when
there is a gap in the instruction stream (because of dependencies), thus using some spare cycles that might
otherwise be wasted.
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Figure 9-3: Expensive operation moved so that it's rarely executed

Figure 4.3

4.2.1.2 Data Dependencies

A calculation that is in some way bound to a previous calculation is said to be data dependent upon that
calculation. In the code below, the value of B is data dependent on the value of A. That's because you can't
calculate B until the value of A is available:

A = X + Y + COS(Z)

B = A * C

This dependency is easy to recognize, but others are not so simple. At other times, you must be careful not
to rewrite a variable with a new value before every other computation has �nished using the old value. We
can group all data dependencies into three categories: (1) �ow dependencies, (2) antidependencies, and (3)
output dependencies. Figure 4.4 (Figure 9-4: Types of data dependencies) contains some simple examples
to demonstrate each type of dependency. In each example, we use an arrow that starts at the source of the
dependency and ends at the statement that must be delayed by the dependency. The key problem in each
of these dependencies is that the second statement can't execute until the �rst has completed. Obviously in
the particular output dependency example, the �rst computation is dead code and can be eliminated unless
there is some intervening code that needs the values. There are other techniques to eliminate either output
or antidependencies. The following example contains a �ow dependency followed by an output dependency.



52 CHAPTER 4. UNDERSTANDING PARALLELISM

Figure 9-4: Types of data dependencies

Figure 4.4

X = A / B

Y = X + 2.0

X = D - E

While we can't eliminate the �ow dependency, the output dependency can be eliminated by using a scratch
variable:

Xtemp = A/B

Y = Xtemp + 2.0

X = D - E

As the number of statements and the interactions between those statements increase, we need a better
way to identify and process these dependencies. Figure 4.5 (Figure 9-5: Multiple dependencies) shows four
statements with four dependencies.
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Figure 9-5: Multiple dependencies

Figure 4.5

None of the second through fourth instructions can be started before the �rst instruction completes.

4.2.1.3 Forming a DAG

One method for analyzing a sequence of instructions is to organize it into a directed acyclic graph (DAG).4

Like the instructions it represents, a DAG describes all of the calculations and relationships between variables.
The data �ow within a DAG proceeds in one direction; most often a DAG is constructed from top to bottom.
Identi�ers and constants are placed at the �leaf � nodes � the ones on the top. Operations, possibly with
variable names attached, make up the internal nodes. Variables appear in their �nal states at the bottom.
The DAG's edges order the relationships between the variables and operations within it. All data �ow
proceeds from top to bottom.

To construct a DAG, the compiler takes each intermediate language tuple and maps it onto one or more
nodes. For instance, those tuples that represent binary operations, such as addition (X=A+B), form a portion
of the DAG with two inputs (A and B) bound together by an operation (+). The result of the operation may
feed into yet other operations within the basic block (and the DAG) as shown in Figure 4.6 (Figure 9-6: A
trivial data �ow graph).

4A graph is a collection of nodes connected by edges. By directed, we mean that the edges can only be traversed in speci�ed
directions. The word acyclic means that there are no cycles in the graph; that is, you can't loop anywhere within it.
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Figure 9-6: A trivial data �ow graph

Figure 4.6

For a basic block of code, we build our DAG in the order of the instructions. The DAG for the previous
four instructions is shown in Figure 4.7 (Figure 9-7: A more complex data �ow graph). This particular
example has many dependencies, so there is not much opportunity for parallelism. Figure 4.8 (Figure 9-8:
Extracting parallelism from a DAG) shows a more straightforward example shows how constructing a DAG
can identify parallelism.

From this DAG, we can determine that instructions 1 and 2 can be executed in parallel. Because we
see the computations that operate on the values A and B while processing instruction 4, we can eliminate a
common subexpression during the construction of the DAG. If we can determine that Z is the only variable
that is used outside this small block of code, we can assume the Y computation is dead code.
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Figure 9-7: A more complex data �ow graph

Figure 4.7

By constructing the DAG, we take a sequence of instructions and determine which must be executed in a
particular order and which can be executed in parallel. This type of data �ow analysis is very important in
the codegeneration phase on super-scalar processors. We have introduced the concept of dependencies and
how to use data �ow to �nd opportunities for parallelism in code sequences within a basic block. We can
also use data �ow analysis to identify dependencies, opportunities for parallelism, and dead code between
basic blocks.

4.2.1.4 Uses and De�nitions

As the DAG is constructed, the compiler can make lists of variable uses and de�nitions, as well as other
information, and apply these to global optimizations across many basic blocks taken together. Looking at
the DAG in Figure 4.8 (Figure 9-8: Extracting parallelism from a DAG), we can see that the variables
de�ned are Z, Y, X, C, and D, and the variables used are A and B. Considering many basic blocks at once, we
can say how far a particular variable de�nition reaches � where its value can be seen. From this we can
recognize situations where calculations are being discarded, where two uses of a given variable are completely
independent, or where we can overwrite register-resident values without saving them back to memory. We
call this investigation data �ow analysis.



56 CHAPTER 4. UNDERSTANDING PARALLELISM

Figure 9-8: Extracting parallelism from a DAG

Figure 4.8

To illustrate, suppose that we have the �ow graph in Figure 4.9 (Figure 9-9: Flow graph for data �ow
analysis). Beside each basic block we've listed the variables it uses and the variables it de�nes. What can
data �ow analysis tell us?

Notice that a value for A is de�ned in block X but only used in block Y. That means that A is dead upon
exit from block Y or immediately upon taking the right-hand branch leaving X; none of the other basic blocks
uses the value of A. That tells us that any associated resources, such as a register, can be freed for other
uses.

Looking at Figure 4.9 (Figure 9-9: Flow graph for data �ow analysis) we can see that D is de�ned in
basic block X, but never used. This means that the calculations de�ning D can be discarded.

Something interesting is happening with the variable G. Blocks X and W both use it, but if you look
closely you'll see that the two uses are distinct from one another, meaning that they can be treated as two
independent variables.

A compiler featuring advanced instruction scheduling techniques might notice that W is the only block
that uses the value for E, and so move the calculations de�ning E out of block Y and into W, where they are
needed.



57

Figure 9-9: Flow graph for data �ow analysis

Figure 4.9

In addition to gathering data about variables, the compiler can also keep information about subexpres-
sions. Examining both together, it can recognize cases where redundant calculations are being made (across
basic blocks), and substitute previously computed values in their place. If, for instance, the expression H*I

appears in blocks X, Y, and W, it could be calculated just once in block X and propagated to the others that
use it.

4.3 Loops5

4.3.1 Loops

Loops are the center of activity for many applications, so there is often a high payback for simplifying or
moving calculations outside, into the computational suburbs. Early compilers for parallel architectures used
pattern matching to identify the bounds of their loops. This limitation meant that a hand-constructed
loop using if-statements and goto-statements would not be correctly identi�ed as a loop. Because modern
compilers use data �ow graphs, it's practical to identify loops as a particular subset of nodes in the �ow graph.
To a data �ow graph, a hand constructed loop looks the same as a compiler-generated loop. Optimizations
can therefore be applied to either type of loop.

5This content is available online at <http://cnx.org/content/m32784/1.1/>.
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Once we have identi�ed the loops, we can apply the same kinds of data-�ow analysis we applied above.
Among the things we are looking for are calculations that are unchanging within the loop and variables that
change in a predictable (linear) fashion from iteration to iteration.

How does the compiler identify a loop in the �ow graph? Fundamentally, two conditions have to be met:

• A given node has to dominate all other nodes within the suspected loop. This means that all paths to
any node in the loop have to pass through one particular node, the dominator. The dominator node
forms the header at the top of the loop.

• There has to be a cycle in the graph. Given a dominator, if we can �nd a path back to it from one of
the nodes it dominates, we have a loop. This path back is known as the back edge of the loop.

The �ow graph in Figure 4.10 (Figure 9-10: Flowgraph with a loop in it) contains one loop and one red
herring. You can see that node B dominates every node below it in the subset of the �ow graph. That satis�es
Condition 1 and makes it a candidate for a loop header. There is a path from E to B, and B dominates E, so
that makes it a back edge, satisfying Condition 2. Therefore, the nodes B, C, D, and E form a loop. The loop
goes through an array of linked list start pointers and traverses the lists to determine the total number of
nodes in all lists. Letters to the extreme right correspond to the basic block numbers in the �ow graph.

Figure 9-10: Flowgraph with a loop in it

Figure 4.10
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At �rst glance, it appears that the nodes C and D form a loop too. The problem is that C doesn't dominate
D (and vice versa), because entry to either can be made from B, so condition 1 isn't satis�ed. Generally,
the �ow graphs that come from code segments written with even the weakest appreciation for a structured
design o�er better loop candidates.

After identifying a loop, the compiler can concentrate on that portion of the �ow graph, looking for
instructions to remove or push to the outside. Certain types of subexpressions, such as those found in array
index expressions, can be simpli�ed if they change in a predictable fashion from one iteration to the next.

In the continuing quest for parallelism, loops are generally our best sources for large amounts of paral-
lelism. However, loops also provide new opportunities for those parallelism-killing dependencies.

4.4 Loop-Carried Dependencies 6

4.4.1 Loop-Carried Dependencies

The notion of data dependence is particularly important when we look at loops, the hub of activity inside
numerical applications. A well-designed loop can produce millions of operations that can all be performed
in parallel. However, a single misplaced dependency in the loop can force it all to be run in serial. So the
stakes are higher when looking for dependencies in loops.

Some constructs are completely independent, right out of the box. The question we want to ask is �Can
two di�erent iterations execute at the same time, or is there a data dependency between them?� Consider
the following loop:

DO I=1,N

A(I) = A(I) + B(I)

ENDDO

For any two values of I and K, can we calculate the value of A(I) and A(K) at the same time? Below, we
have manually unrolled several iterations of the previous loop, so they can be executed together:

A(I) = A(I) + B(I)

A(I+1) = A(I+1) + B(I+1)

A(I+2) = A(I+2) + B(I+2)

You can see that none of the results are used as an operand for another calculation. For instance, the
calculation for A(I+1) can occur at the same time as the calculation for A(I) because the calculations are
independent; you don't need the results of the �rst to determine the second. In fact, mixing up the order of
the calculations won't change the results in the least. Relaxing the serial order imposed on these calculations
makes it possible to execute this loop very quickly on parallel hardware.

4.4.1.1 Flow Dependencies

For comparison, look at the next code fragment:

6This content is available online at <http://cnx.org/content/m32782/1.1/>.
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DO I=2,N

A(I) = A(I-1) + B(I)

ENDDO

This loop has the regularity of the previous example, but one of the subscripts is changed. Again, it's useful
to manually unroll the loop and look at several iterations together:

A(I) = A(I-1) + B(I)

A(I+1) = A(I) + B(I+1)

A(I+2) = A(I+1) + B(I+2)

In this case, there is a dependency problem. The value of A(I+1) depends on the value of A(I), the value of
A(I+2) depends on A(I+1), and so on; every iteration depends on the result of a previous one. Dependencies
that extend back to a previous calculation and perhaps a previous iteration (like this one), are loop carried
�ow dependencies or backward dependencies. You often see such dependencies in applications that perform
Gaussian elimination on certain types of matrices, or numerical solutions to systems of di�erential equations.
However, it is impossible to run such a loop in parallel (as written); the processor must wait for intermediate
results before it can proceed.

In some cases, �ow dependencies are impossible to �x; calculations are so dependent upon one another
that we have no choice but to wait for previous ones to complete. Other times, dependencies are a function
of the way the calculations are expressed. For instance, the loop above can be changed to reduce the
dependency. By replicating some of the arithmetic, we can make it so that the second and third iterations
depend on the �rst, but not on one another. The operation count goes up � we have an extra addition that
we didn't have before � but we have reduced the dependency between iterations:

DO I=2,N,2

A(I) = A(I-1) + B(I)

A(I+1) = A(I-1) + B(I) + B(I+1)

ENDDO

The speed increase on a workstation won't be great (most machines run the recast loop more slowly).
However, some parallel computers can trade o� additional calculations for reduced dependency and chalk
up a net win.

4.4.1.2 Antidependencies

It's a di�erent story when there is a loop-carried antidependency, as in the code below:

DO I=1,N
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A(I) = B(I) * E

B(I) = A(I+2) * C

ENDDO

In this loop, there is an antidependency between the variable A(I) and the variable A(I+2). That is, you
must be sure that the instruction that uses A(I+2) does so before the previous one rede�nes it. Clearly, this
is not a problem if the loop is executed serially, but remember, we are looking for opportunities to overlap
instructions. Again, it helps to pull the loop apart and look at several iterations together. We have recast
the loop by making many copies of the �rst statement, followed by copies of the second:

A(I) = B(I) * E

A(I+1) = B(I+1) * E

A(I+2) = B(I+2) * E

...

B(I) = A(I+2) * C ← assignment makes use of the new

B(I+1) = A(I+3) * C value of A(I+2) incorrect.

B(I+2) = A(I+4) * C

The reference to A(I+2) needs to access an �old� value, rather than one of the new ones being calculated.
If you perform all of the �rst statement followed by all of the second statement, the answers will be wrong.
If you perform all of the second statement followed by all of the �rst statement, the answers will also be
wrong. In a sense, to run the iterations in parallel, you must either save the A values to use for the second
statement or store all of the B value in a temporary area until the loop completes.

We can also directly unroll the loop and �nd some parallelism:

1 A(I) = B(I) * E

2 B(I) = A(I+2) * C →
3 A(I+1) = B(I+1) * E | Output dependency

4 B(I+1) = A(I+3) * C |

5 A(I+2) = B(I+2) * E ←
6 B(I+2) = A(I+4) * C

Statements 1�4 could all be executed simultaneously. Once those statements completed execution, statements
5�8 could execute in parallel. Using this approach, there are su�cient intervening statements between the
dependent statements that we can see some parallel performance improvement from a superscalar RISC
processor.

4.4.1.3 Output Dependencies

The third class of data dependencies, output dependencies, is of particular interest to users of parallel
computers, particularly multiprocessors. Output dependencies involve getting the right values to the right
variables when all calculations have been completed. Otherwise, an output dependency is violated. The loop
below assigns new values to two elements of the vector A with each iteration:
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DO I=1,N

A(I) = C(I) * 2.

A(I+2) = D(I) + E

ENDDO

As always, we won't have any problems if we execute the code sequentially. But if several iterations are
performed together, and statements are reordered, then incorrect values can be assigned to the last elements
of A. For example, in the naive vectorized equivalent below, A(I+2) takes the wrong value because the
assignments occur out of order:

A(I) = C(I) * 2.

A(I+1) = C(I+1) * 2.

A(I+2) = C(I+2) * 2.

A(I+2) = D(I) + E ← Output dependency violated

A(I+3) = D(I+1) + E

A(I+4) = D(I+2) + E

Whether or not you have to worry about output dependencies depends on whether you are actually paral-
lelizing the code. Your compiler will be conscious of the danger, and will be able to generate legal code �
and possibly even fast code, if it's clever enough. But output dependencies occasionally become a problem
for programmers.

4.4.1.4 Dependencies Within an Iteration

We have looked at dependencies that cross iteration boundaries but we haven't looked at dependencies within
the same iteration. Consider the following code fragment:

DO I = 1,N

D = B(I) * 17

A(I) = D + 14

ENDDO

When we look at the loop, the variable D has a �ow dependency. The second statement cannot start until
the �rst statement has completed. At �rst glance this might appear to limit parallelism signi�cantly. When
we look closer and manually unroll several iterations of the loop, the situation gets worse:

D = B(I) * 17

A(I) = D + 14

D = B(I+1) * 17
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A(I+1) = D + 14

D = B(I+2) * 17

A(I+2) = D + 14

Now, the variable D has �ow, output, and antidependencies. It looks like this loop has no hope of running in
parallel. However, there is a simple solution to this problem at the cost of some extra memory space, using
a technique called promoting a scalar to a vector. We de�ne D as an array withN elements and rewrite the
code as follows:

DO I = 1,N

D(I) = B(I) * 17

A(I) = D(I) + 14

ENDDO

Now the iterations are all independent and can be run in parallel. Within each iteration, the �rst statement
must run before the second statement.

4.4.1.5 Reductions

The sum of an array of numbers is one example of a reduction � so called because it reduces a vector to a
scalar. The following loop to determine the total of the values in an array certainly looks as though it might
be able to be run in parallel:

SUM = 0.0

DO I=1,N

SUM = SUM + A(I)

ENDDO

However, if we perform our unrolling trick, it doesn't look very parallel:

SUM = SUM + A(I)

SUM = SUM + A(I+1)

SUM = SUM + A(I+2)

This loop also has all three types of dependencies and looks impossible to parallelize. If we are willing to
accept the potential e�ect of rounding, we can add some parallelism to this loop as follows (again we did not
add the preconditioning loop):

SUM0 = 0.0
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SUM1 = 0.0

SUM2 = 0.0

SUM3 = 0.0

DO I=1,N,4

SUM0 = SUM0 + A(I)

SUM1 = SUM1 + A(I+1)

SUM2 = SUM2 + A(I+2)

SUM3 = SUM3 + A(I+3)

ENDDO

SUM = SUM0 + SUM1 + SUM2 + SUM3

Again, this is not precisely the same computation, but all four partial sums can be computed independently.
The partial sums are combined at the end of the loop.

Loops that look for the maximum or minimum elements in an array, or multiply all the elements of an
array, are also reductions. Likewise, some of these can be reorganized into partial results, as with the sum, to
expose more computations. Note that the maximum and minimum are associative operators, so the results
of the reorganized loop are identical to the sequential loop.

4.5 Ambiguous References7

4.5.1 Ambiguous References

Every dependency we have looked at so far has been clear cut; you could see exactly what you were dealing
with by looking at the source code. But other times, describing a dependency isn't so easy. Recall this loop
from the �Antidependencies� section earlier in this chapter:

DO I=1,N

A(I) = B(I) * E

B(I) = A(I+2) * C

ENDDO

Because each variable reference is solely a function of the index, I, it's clear what kind of dependency we
are dealing with. Furthermore, we can describe how far apart (in iterations) a variable reference is from
its de�nition. This is called the dependency distance. A negative value represents a �ow dependency; a
positive value means there is an antidependency. A value of zero says that no dependency exists between
the reference and the de�nition. In this loop, the dependency distance for A is +2 iterations.

However, array subscripts may be functions of other variables besides the loop index. It may be di�cult
to tell the distance between the use and de�nition of a particular element. It may even be impossible to tell
whether the dependency is a �ow dependency or an antidependency, or whether a dependency exists at all.
Consequently, it may be impossible to determine if it's safe to overlap execution of di�erent statements, as
in the following loop:

DO I=1,N

7This content is available online at <http://cnx.org/content/m32788/1.1/>.
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A(I) = B(I) * E

B(I) = A(I+K) * C ← K unknown

ENDDO

If the loop made use of A(I+K), where the value of K was unknown, we wouldn't be able to tell (at least
by looking at the code) anything about the kind of dependency we might be facing. If K is zero, we have a
dependency within the iteration and no loop-carried dependencies. If K is positive we have an antidependency
with distance K. Depending on the value for K, we might have enough parallelism for a superscalar processor.
If K is negative, we have a loop-carried �ow dependency, and we may have to execute the loop serially.

Ambiguous references, like A(I+K) above, have an e�ect on the parallelism we can detect in a loop. From
the compiler perspective, it may be that this loop does contain two independent calculations that the author
whimsically decided to throw into a single loop. But when they appear together, the compiler has to treat
them conservatively, as if they were interrelated. This has a big e�ect on performance. If the compiler has
to assume that consecutive memory references may ultimately access the same location, the instructions
involved cannot be overlapped. One other option is for the compiler to generate two versions of the loop
and check the value for K at runtime to determine which version of the loop to execute.

A similar situation occurs when we use integer index arrays in a loop. The loop below contains only a
single statement, but you can't be sure that any iteration is independent without knowing the contents of
the K and J arrays:

DO I=1,N

A(K(I)) = A(K(I)) + B(J(I)) * C

ENDDO

For instance, what if all of the values for K(I) were the same? This causes the same element of the array A

to be rereferenced with each iteration! That may seem ridiculous to you, but the compiler can't tell.
With code like this, it's common for every value of K(I) to be unique. This is called a permutation. If

you can tell a compiler that it is dealing with a permutation, the penalty is lessened in some cases. Even so,
there is insult being added to injury. Indirect references require more memory activity than direct references,
and this slows you down.

4.5.1.1 Pointer Ambiguity in Numerical C Applications

FORTRAN compilers depend on programmers to observe aliasing rules. That is, programmers are not
supposed to modify locations through pointers that may be aliases of one another. They can become aliases
in several ways, such as when two dummy arguments receive pointers to the same storage locations:

CALL BOB (A,A)

...

END

SUBROUTINE BOB (X,Y) ← X,Y become aliases

C compilers don't enjoy the same restrictions on aliasing. In fact, there are cases where aliasing could be
desirable. Additionally, C is blessed with pointer types, increasing the opportunities for aliasing to occur.
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This means that a C compiler has to approach operations through pointers more conservatively than a
FORTRAN compiler would. Let's look at some examples to see why.

The following loop nest looks like a FORTRAN loop cast in C. The arrays are declared or allocated all at
once at the top of the routine, and the starting address and leading dimensions are visible to the compiler.
This is important because it means that the storage relationship between the array elements is well known.
Hence, you could expect good performance:

#define N ...

double *a[N][N], c[N][N], d;

for (i=0; i<N; i++)

for (j=0; j<N; j++)

a[i][j] = a[i][j] + c[j][i] * d;

Now imagine what happens if you allocate the rows dynamically. This makes the address calculations more
complicated. The loop nest hasn't changed; however, there is no guaranteed stride that can get you from
one row to the next. This is because the storage relationship between the rows is unknown:

#define N ...

double *a[N], *c[N], d;

for (i=0; i<N; i++) {

a[i] = (double *) malloc (N*sizeof(double));

c[i] = (double *) malloc (N*sizeof(double));

}

for (i=0; i<N; i++)

for (j=0; j<N; j++)

a[i][j] = a[i][j] + c[j][i] * d;

In fact, your compiler knows even less than you might expect about the storage relationship. For instance,
how can it be sure that references to a and c aren't aliases? It may be obvious to you that they're not. You
might point out that malloc never overlaps storage. But the compiler isn't free to assume that. Who knows?
You may be substituting your own version of malloc!

Let's look at a di�erent example, where storage is allocated all at once, though the declarations are not
visible to all routines that are using it. The following subroutine bob performs the same computation as
our previous example. However, because the compiler can't see the declarations for a and c (they're in the
main routine), it doesn't have enough information to be able to overlap memory references from successive
iterations; the references could be aliases:

#define N...

main()

{

double a[N][N], c[N][N], d;

...

bob (a,c,d,N);
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}

bob (double *a,double *c,double d,int n)

{

int i,j;

double *ap, *cp;

for (i=0;i<n;i++) {

ap = a + (i*n);

cp = c + i;

for (j=0; j<n; j++)

*(ap+j) = *(ap+j) + *(cp+(j*n)) * d;

}

}

To get the best performance, make available to the compiler as many details about the size and shape of your
data structures as possible. Pointers, whether in the form of formal arguments to a subroutine or explicitly
declared, can hide important facts about how you are using memory. The more information the compiler
has, the more it can overlap memory references. This information can come from compiler directives or from
making declarations visible in the routines where performance is most critical.

4.6 Closing Notes8

4.6.1 Closing Notes

You already knew there was a limit to the amount of parallelism in any given program. Now you know
why. Clearly, if a program had no dependencies, you could execute the whole thing at once, given suitable
hardware. But programs aren't in�nitely parallel; they are often hardly parallel at all. This is because they
contain dependencies of the types we saw above.

When we are writing and/or tuning our loops, we have a number of (sometimes con�icting) goals to keep
in mind:

• Balance memory operations and computations.
• Minimize unnecessary operations.
• Access memory using unit stride if at all possible.
• Allow all of the loop iterations to be computed in parallel.

In the coming chapters, we will begin to learn more about executing our programs on parallel multiprocessors.
At some point we will escape the bonds of compiler automatic optimization and begin to explicitly code the
parallel portions of our code.

To learn more about compilers and data�ow, read The Art of Compiler Design: Theory and Practice by
Thomas Pittman and James Peters (Prentice-Hall).

4.7 Exercises9

4.7.1 Exercises

Exercise 4.1
Identify the dependencies (if there are any) in the following loops. Can you think of ways to
organize each loop for more parallelism?

8This content is available online at <http://cnx.org/content/m32789/1.1/>.
9This content is available online at <http://cnx.org/content/m32792/1.1/>.
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a.

DO I=1,N-2

A(I+2) = A(I) + 1.

ENDDO

b.

DO I=1,N-1,2

A(I+1) = A(I) + 1.

ENDDO

c.

DO I=2,N

A(I) = A(I-1) * 2.

B = A(I-1)

ENDDO

d.

DO I=1,N

IF(N .GT. M)

A(I) = 1.

ENDDO

e.

DO I=1,N

A(I,J) = A(I,K) + B

ENDDO

f.

DO I=1,N-1

A(I+1,J) = A(I,K) + B

ENDDO

g.
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for (i=0; i<n; i++)

a[i] = b[i];

Exercise 4.2
Imagine that you are a parallelizing compiler, trying to generate code for the loop below. Why are
references to A a challenge? Why would it help to know that K is equal to zero? Explain how you
could partially vectorize the statements involving A if you knew that K had an absolute value of
at least 8.

DO I=1,N

E(I,M) = E(I-1,M+1) - 1.0

B(I) = A(I+K) * C

A(I) = D(I) * 2.0

ENDDO

Exercise 4.3
The following three statements contain a �ow dependency, an antidependency and an output
dependency. Can you identify each? Given that you are allowed to reorder the statements, can you
�nd a permutation that produces the same values for the variables C and B? Show how you can
reduce the dependencies by combining or rearranging calculations and using temporary variables.

B = A + C

B = C + D

C = B + D
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Chapter 5

Shared-Memory Multiprocessors

5.1 Introduction1

5.1.1 Shared-Memory Multiprocessors

In the mid-1980s, shared-memory multiprocessors were pretty expensive and pretty rare. Now, as hardware
costs are dropping, they are becoming commonplace. Many home computer systems in the under-$3000
range have a socket for a second CPU. Home computer operating systems are providing the capability to use
more than one processor to improve system performance. Rather than specialized resources locked away in
a central computing facility, these shared-memory processors are often viewed as a logical extension of the
desktop. These systems run the same operating system (UNIX or NT) as the desktop and many of the same
applications from a workstation will execute on these multiprocessor servers.

Typically a workstation will have from 1 to 4 processors and a server system will have 4 to 64 processors.
Shared-memory multiprocessors have a signi�cant advantage over other multiprocessors because all the
processors share the same view of the memory, as shown in Figure 10-1.

These processors are also described as uniform memory access (also known as UMA) systems. This
designation indicates that memory is equally accessible to all processors with the same performance.

The popularity of these systems is not due simply to the demand for high performance computing. These
systems are excellent at providing high throughput for a multiprocessing load, and function e�ectively as
high-performance database servers, network servers, and Internet servers. Within limits, their throughput
is increased linearly as more processors are added.

In this book we are not so interested in the performance of database or Internet servers. That is too
passé; buy more processors, get better throughput. We are interested in pure, raw, unadulterated compute
speed for our high performance application. Instead of running hundreds of small jobs, we want to utilize
all $750,000 worth of hardware for our single job.

The challenge is to �nd techniques that make a program that takes an hour to complete using one
processor, complete in less than a minute using 64 processors. This is not trivial. Throughout this book so
far, we have been on an endless quest for parallelism. In this and the remaining chapters, we will begin to
see the payo� for all of your hard work and dedication!

The cost of a shared-memory multiprocessor can range from $4000 to $30 million. Some example sys-
tems include multiple-processor Intel systems from a wide range of vendors, SGI Power Challenge Series,
HP/Convex C-Series, DEC AlphaServers, Cray vector/parallel processors, and Sun Enterprise systems. The
SGI Origin 2000, HP/Convex Exemplar, Data General AV-20000, and Sequent NUMAQ-2000 all are uniform-
memory, symmetric multiprocessing systems that can be linked to form even larger shared nonuniform
memory-access systems. Among these systems, as the price increases, the number of CPUs increases, the
performance of individual CPUs increases, and the memory performance increases.

1This content is available online at <http://cnx.org/content/m32797/1.1/>.
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In this chapter we will study the hardware and software environment in these systems and learn how to
execute our programs on these systems.

5.2 Symmetric Multiprocessing Hardware2

5.2.1 Symmetric Multiprocessing Hardware

In Figure 5.1 (Figure 10-1: A shared-memory multiprocessor), we viewed an ideal shared-memory multipro-
cessor. In this section, we look in more detail at how such a system is actually constructed. The primary
advantage of these systems is the ability for any CPU to access all of the memory and peripherals. Fur-
thermore, the systems need a facility for deciding among themselves who has access to what, and when,
which means there will have to be hardware support for arbitration. The two most common architectural
underpinnings for symmetric multiprocessing are buses and crossbars. The bus is the simplest of the two
approaches. Figure 5.2 shows processors connected using a bus. A bus can be thought of as a set of par-
allel wires connecting the components of the computer (CPU, memory, and peripheral controllers), a set
of protocols for communication, and some hardware to help carry it out. A bus is less expensive to build,
but because all tra�c must cross the bus, as the load increases, the bus eventually becomes a performance
bottleneck.

Figure 10-1: A shared-memory multiprocessor

Figure 5.1

2This content is available online at <http://cnx.org/content/m32794/1.1/>.
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Figure 5.2: Figure 10-2: A typical bus architecture

A crossbar is a hardware approach to eliminate the bottleneck caused by a single bus. A crossbar is
like several buses running side by side with attachments to each of the modules on the machine � CPU,
memory, and peripherals. Any module can get to any other by a path through the crossbar, and multiple
paths may be active simultaneously. In the 4×5 crossbar of Figure 5.3, for instance, there can be four
active data transfers in progress at one time. In the diagram it looks like a patchwork of wires, but there is
actually quite a bit of hardware that goes into constructing a crossbar. Not only does the crossbar connect
parties that wish to communicate, but it must also actively arbitrate between two or more CPUs that want
access to the same memory or peripheral. In the event that one module is too popular, it's the crossbar
that decides who gets access and who doesn't. Crossbars have the best performance because there is no
single shared bus. However, they are more expensive to build, and their cost increases as the number of
ports is increased. Because of their cost, crossbars typically are only found at the high end of the price and
performance spectrum.

Whether the system uses a bus or crossbar, there is only so much memory bandwidth to go around; four
or eight processors drawing from one memory system can quickly saturate all available bandwidth. All of
the techniques that improve memory performance (as described in Chapter 3, Memory) also apply here in
the design of the memory subsystems attached to these buses or crossbars.
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Figure 5.3: Figure 10-3: A crossbar

5.2.1.1 The E�ect of Cache

The most common multiprocessing system is made up of commodity processors connected to memory and
peripherals through a bus. Interestingly, the fact that these processors make use of cache somewhat mitigates
the bandwidth bottleneck on a bus-based architecture. By connecting the processor to the cache and viewing
the main memory through the cache, we signi�cantly reduce the memory tra�c across the bus. In this
architecture, most of the memory accesses across the bus take the form of cache line loads and �ushes. To
understand why, consider what happens when the cache hit rate is very high. In Figure 5.4, a high cache
hit rate eliminates some of the tra�c that would have otherwise gone out across the bus or crossbar to
main memory. Again, it is the notion of �locality of reference� that makes the system work. If you assume
that a fair number of the memory references will hit in the cache, the equivalent attainable main memory
bandwidth is more than the bus is actually capable of. This assumption explains why multiprocessors are
designed with less bus bandwidth than the sum of what the CPUs can consume at once.

Imagine a scenario where two CPUs are accessing di�erent areas of memory using unit stride. Both CPUs
access the �rst element in a cache line at the same time. The bus arbitrarily allows one CPU access to the
memory. The �rst CPU �lls a cache line and begins to process the data. The instant the �rst CPU has
completed its cache line �ll, the cache line �ll for the second CPU begins. Once the second cache line �ll has
completed, the second CPU begins to process the data in its cache line. If the time to process the data in
a cache line is longer than the time to �ll a cache line, the cache line �ll for processor two completes before
the next cache line request arrives from processor one. Once the initial con�ict is resolved, both processors
appear to have con�ict-free access to memory for the remainder of their unit-stride loops.
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Figure 5.4: Figure 10-4: High cache hit rate reduces main memory tra�c

In actuality, on some of the fastest bus-based systems, the memory bus is su�ciently fast that up to
20 processors can access memory using unit stride with very little con�ict. If the processors are accessing
memory using non-unit stride, bus and memory bank con�ict becomes apparent, with fewer processors.

This bus architecture combined with local caches is very popular for general-purpose multiprocessing
loads. The memory reference patterns for database or Internet servers generally consist of a combination of
time periods with a small working set, and time periods that access large data structures using unit stride.
Scienti�c codes tend to perform more non-unit-stride access than general-purpose codes. For this reason,
the most expensive parallel-processing systems targeted at scienti�c codes tend to use crossbars connected
to multibanked memory systems.

The main memory system is better shielded when a larger cache is used. For this reason, multiprocessors
sometimes incorporate a two-tier cache system, where each processor uses its own small on-chip local cache,
backed up by a larger second board-level cache with as much as 4 MB of memory. Only when neither can
satisfy a memory request, or when data has to be written back to main memory, does a request go out over
the bus or crossbar.

5.2.1.2 Coherency

Now, what happens when one CPU of a multiprocessor running a single program in parallel changes the
value of a variable, and another CPU tries to read it? Where does the value come from? These questions
are interesting because there can be multiple copies of each variable, and some of them can hold old or stale
values.

For illustration, say that you are running a program with a shared variable A. Processor 1 changes the
value of A and Processor 2 goes to read it.
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Figure 5.5: Figure 10-5: Multiple copies of variable A

In Figure 5.5, if Processor 1 is keeping A as a register-resident variable, then Processor 2 doesn't stand
a chance of getting the correct value when it goes to look for it. There is no way that 2 can know the
contents of 1's registers; so assume, at the very least, that Processor 1 writes the new value back out. Now
the question is, where does the new value get stored? Does it remain in Processor 1's cache? Is it written to
main memory? Does it get updated in Processor 2's cache?

Really, we are asking what kind of cache coherency protocol the vendor uses to assure that all processors
see a uniform view of the values in �memory.� It generally isn't something that the programmer has to
worry about, except that in some cases, it can a�ect performance. The approaches used in these systems
are similar to those used in single-processor systems with some extensions. The most straight-forward cache
coherency approach is called a write-through policy : variables written into cache are simultaneously written
into main memory. As the update takes place, other caches in the system see the main memory reference
being performed. This can be done because all of the caches continuously monitor (also known as snooping
) the tra�c on the bus, checking to see if each address is in their cache. If a cache �notices� that it contains
a copy of the data from the locations being written, it may either invalidate its copy of the variable or
obtain new values (depending on the policy). One thing to note is that a write-through cache demands a
fair amount of main memory bandwidth since each write goes out over the main memory bus. Furthermore,
successive writes to the same location or bank are subject to the main memory cycle time and can slow the
machine down.

A more sophisticated cache coherency protocol is called copyback or writeback. The idea is that you
write values back out to main memory only when the cache housing them needs the space for something else.
Updates of cached data are coordinated between the caches, by the caches, without help from the processor.
Copyback caching also uses hardware that can monitor (snoop) and respond to the memory transactions of
the other caches in the system. The bene�t of this method over the write-through method is that memory
tra�c is reduced considerably. Let's walk through it to see how it works.

5.2.1.3 Cache Line States

For this approach to work, each cache must maintain a state for each line in its cache. The possible states
used in the example include:

Modi�ed: This cache line needs to be written back to memory.
Exclusive: There are no other caches that have this cache line.
Shared : There are read-only copies of this line in two or more caches.
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Empty/Invalid: This cache line doesn't contain any useful data.

This particular coherency protocol is often called MESI. Other cache coherency protocols are more compli-
cated, but these states give you an idea how multiprocessor writeback cache coherency works.

We start where a particular cache line is in memory and in none of the writeback caches on the systems.
The �rst cache to ask for data from a particular part of memory completes a normal memory access; the
main memory system returns data from the requested location in response to a cache miss. The associated
cache line is marked exclusive, meaning that this is the only cache in the system containing a copy of the
data; it is the owner of the data. If another cache goes to main memory looking for the same thing, the
request is intercepted by the �rst cache, and the data is returned from the �rst cache � not main memory.
Once an interception has occurred and the data is returned, the data is marked shared in both of the caches.

When a particular line is marked shared, the caches have to treat it di�erently than they would if they
were the exclusive owners of the data � especially if any of them wants to modify it. In particular, a write to
a shared cache entry is preceded by a broadcast message to all the other caches in the system. It tells them
to invalidate their copies of the data. The one remaining cache line gets marked as modi�ed to signal that
it has been changed, and that it must be returned to main memory when the space is needed for something
else. By these mechanisms, you can maintain cache coherence across the multiprocessor without adding
tremendously to the memory tra�c.

By the way, even if a variable is not shared, it's possible for copies of it to show up in several caches.
On a symmetric multiprocessor, your program can bounce around from CPU to CPU. If you run for a little
while on this CPU, and then a little while on that, your program will have operated out of separate caches.
That means that there can be several copies of seemingly unshared variables scattered around the machine.
Operating systems often try to minimize how often a process is moved between physical CPUs during context
switches. This is one reason not to overload the available processors in a system.

5.2.1.4 Data Placement

There is one more pitfall regarding shared memory we have so far failed to mention. It involves data
movement. Although it would be convenient to think of the multiprocessor memory as one big pool, we have
seen that it is actually a carefully crafted system of caches, coherency protocols, and main memory. The
problems come when your application causes lots of data to be traded between the caches. Each reference
that falls out of a given processor's cache (especially those that require an update in another processor's
cache) has to go out on the bus.

Often, it's slower to get memory from another processor's cache than from the main memory because of
the protocol and processing overhead involved. Not only do we need to have programs with high locality of
reference and unit stride, we also need to minimize the data that must be moved from one CPU to another.

5.3 Multiprocessor Software Concepts 3

5.3.1 Multiprocessor Software Concepts

Now that we have examined the way shared-memory multiprocessor hardware operates, we need to examine
how software operates on these types of computers. We still have to wait until the next chapters to begin
making our FORTRAN programs run in parallel. For now, we use C programs to examine the fundamentals
of multiprocessing and multithreading. There are several techniques used to implement multithreading, so
the topics we will cover include:

• Operating system�supported multiprocessing
• User space multithreading
• Operating system-supported multithreading

The last of these is what we primarily will use to reduce the walltime of our applications.

3This content is available online at <http://cnx.org/content/m32800/1.1/>.
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5.3.1.1 Operating System�Supported Multiprocessing

Most modern general-purpose operating systems support some form of multiprocessing. Multiprocessing
doesn't require more than one physical CPU; it is simply the operating system's ability to run more than
one process on the system. The operating system context-switches between each process at �xed time
intervals, or on interrupts or input-output activity. For example, in UNIX, if you use the ps command, you
can see the processes on the system:

% ps -a

PID TTY TIME CMD

28410 pts/34 0:00 tcsh

28213 pts/38 0:00 xterm

10488 pts/51 0:01 telnet

28411 pts/34 0:00 xbiff

11123 pts/25 0:00 pine

3805 pts/21 0:00 elm

6773 pts/44 5:48 ansys

...

% ps --a | grep ansys

6773 pts/44 6:00 ansys

For each process we see the process identi�er (PID), the terminal that is executing the command, the amount
of CPU time the command has used, and the name of the command. The PID is unique across the entire
system. Most UNIX commands are executed in a separate process. In the above example, most of the
processes are waiting for some type of event, so they are taking very few resources except for memory.
Process 67734 seems to be executing and using resources. Running ps again con�rms that the CPU time is
increasing for the ansys process:

% vmstat 5

procs memory page disk faults cpu

r b w swap free re mf pi po fr de sr f0 s0 -- -- in sy cs us sy id

3 0 0 353624 45432 0 0 1 0 0 0 0 0 0 0 0 461 5626 354 91 9 0

3 0 0 353248 43960 0 22 0 0 0 0 0 0 14 0 0 518 6227 385 89 11 0

Running the vmstat 5 command tells us many things about the activity on the system. First, there are
three runnable processes. If we had one CPU, only one would actually be running at a given instant. To
allow all three jobs to progress, the operating system time-shares between the processes. Assuming equal
priority, each process executes about 1/3 of the time. However, this system is a two-processor system, so
each process executes about 2/3 of the time. Looking across the vmstat output, we can see paging activity
(pi, po), context switches (cs), overall user time (us), system time (sy), and idle time (id ).

Each process can execute a completely di�erent program. While most processes are completely indepen-
dent, they can cooperate and share information using interprocess communication (pipes, sockets) or various
operating system-supported shared-memory areas. We generally don't use multiprocessing on these shared-
memory systems as a technique to increase single-application performance. We will explore techniques that
use multiprocessing coupled with communication to improve performance on scalable parallel processing
systems in Chapter 12, Large- Scale Parallel Computing.

4ANSYS is a commonly used structural-analysis package.
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5.3.1.2 Multiprocessing software

In this section, we explore how programs access multiprocessing features.5 In this example, the program
creates a new process using the fork( ) function. The new process (child) prints some messages and then
changes its identity using exec( ) by loading a new program. The original process (parent) prints some
messages and then waits for the child process to complete:

int globvar; /* A global variable */

main () {

int pid,status,retval;

int stackvar; /* A stack variable */

globvar = 1;

stackvar = 1;

printf("Main - calling fork globvar=%d stackvar=%d\n",globvar,stackvar);
pid = fork();

printf("Main - fork returned pid=%d\n",pid);
if ( pid == 0 ) {

printf("Child - globvar=%d stackvar=%d\n",globvar,stackvar);
sleep(1);

printf("Child - woke up globvar=%d stackvar=%d\n",globvar,stackvar);
globvar = 100;

stackvar = 100;

printf("Child - modified globvar=%d stackvar=%d\n",globvar,stackvar);
retval = execl("/bin/date", (char *) 0 );

printf("Child - WHY ARE WE HERE retval=%d\n",retval);
} else {

printf("Parent - globvar=%d stackvar=%d\n",globvar,stackvar);
globvar = 5;

stackvar = 5;

printf("Parent - sleeping globvar=%d stackvar=%d\n",globvar,stackvar);
sleep(2);

printf("Parent - woke up globvar=%d stackvar=%d\n",globvar,stackvar);
printf("Parent - waiting for pid=%d\n",pid);
retval = wait(&status);

status = status � 8; /* Return code in bits 15-8 */

printf("Parent - status=%d retval=%d\n",status,retval);
}

}

The key to understanding this code is to understand how the fork( ) function operates. The simple
summary is that the fork( ) function is called once in a process and returns twice, once in the original
process and once in a newly created process. The newly created process is an identical copy of the original
process. All the variables (local and global) have been duplicated. Both processes have access to all of the
open �les of the original process. Figure 5.6 (Figure 10-6: How a fork operates) shows how the fork operation
creates a new process.

5These examples are written in C using the POSIX 1003.1 application programming interface. This example runs on most
UNIX systems and on other POSIX-compliant systems including OpenNT, Open- VMS, and many others.
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The only di�erence between the processes is that the return value from the fork( ) function call is 0
in the new (child) process and the process identi�er (shown by the ps command) in the original (parent)
process. This is the program output:

recs % cc -o fork fork.c

recs % fork

Main - calling fork globvar=1 stackvar=1

Main - fork returned pid=19336

Main - fork returned pid=0

Parent - globvar=1 stackvar=1

Parent - sleeping globvar=5 stackvar=5

Child - globvar=1 stackvar=1

Child - woke up globvar=1 stackvar=1

Child - modified globvar=100 stackvar=100

Thu Nov 6 22:40:33

Parent - woke up globvar=5 stackvar=5

Parent - waiting for pid=19336

Parent - status=0 retval=19336

recs %

Tracing this through, �rst the program sets the global and stack variable to one and then calls fork( ).
During the fork( ) call, the operating system suspends the process, makes an exact duplicate of the process,
and then restarts both processes. You can see two messages from the statement immediately after the fork.
The �rst line is coming from the original process, and the second line is coming from the new process. If you
were to execute a ps command at this moment in time, you would see two processes running called �fork.�
One would have a process identi�er of 19336.
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Figure 10-6: How a fork operates

Figure 5.6

As both processes start, they execute an IF-THEN-ELSE and begin to perform di�erent actions in the
parent and child. Notice that globvar and stackvar are set to 5 in the parent, and then the parent sleeps for
two seconds. At this point, the child begins executing. The values for globvar and stackvar are unchanged
in the child process. This is because these two processes are operating in completely independent memory
spaces. The child process sleeps for one second and sets its copies of the variables to 100. Next, the child
process calls the execl( ) function to overwrite its memory space with the UNIX date program. Note that
the execl( ) never returns; the date program takes over all of the resources of the child process. If you
were to do a ps at this moment in time, you still see two processes on the system but process 19336 would
be called �date.� The date command executes, and you can see its output.6

The parent wakes up after a brief two-second sleep and notices that its copies of global and local variables
have not been changed by the action of the child process. The parent then calls the wait( ) function to

6It's not uncommon for a human parent process to �fork� and create a human child process that initially seems to have the
same identity as the parent. It's also not uncommon for the child process to change its overall identity to be something very
di�erent from the parent at some later point. Usually human children wait 13 years or so before this change occurs, but in
UNIX, this happens in a few microseconds. So, in some ways, in UNIX, there are many parent processes that are �disappointed�
because their children did not turn out like them!
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determine if any of its children exited. The wait( ) function returns which child has exited and the status
code returned by that child process (in this case, process 19336).

5.3.1.3 User Space Multithreading

A thread is di�erent from a process. When you add threads, they are added to the existing process rather
than starting in a new process. Processes start with a single thread of execution and can add or remove
threads throughout the duration of the program. Unlike processes, which operate in di�erent memory spaces,
all threads in a process share the same memory space. Figure 10-7 shows how the creation of a thread di�ers
from the creation of a process. Not all of the memory space in a process is shared between all threads. In
addition to the global area that is shared across all threads, each thread has a thread private area for its
own local variables. It's important for programmers to know when they are working with shared variables
and when they are working with local variables.

When attempting to speed up high performance computing applications, threads have the advantage
over processes in that multiple threads can cooperate and work on a shared data structure to hasten the
computation. By dividing the work into smaller portions and assigning each smaller portion to a separate
thread, the total work can be completed more quickly.

Multiple threads are also used in high performance database and Internet servers to improve the overall
throughput of the server. With a single thread, the program can either be waiting for the next network
request or reading the disk to satisfy the previous request. With multiple threads, one thread can be waiting
for the next network transaction while several other threads are waiting for disk I/O to complete.

The following is an example of a simple multithreaded application.7 It begins with a single master
thread that creates three additional threads. Each thread prints some messages, accesses some global and
local variables, and then terminates:

#define_REENTRANT /* basic lines for threads */

#include <stdio.h>
#include <pthread.h>

#define THREAD_COUNT 3

void *TestFunc(void *);

int globvar; /* A global variable */

int index[THREAD_COUNT] /* Local zero-based thread index */

pthread_t thread_id[THREAD_COUNT]; /* POSIX Thread IDs */

main() {

int i,retval;

pthread_t tid;

globvar = 0;

printf("Main - globvar=%d\n",globvar);
for(i=0;i<THREAD_COUNT;i++) {

index[i] = i;

retval = pthread_create(&tid,NULL,TestFunc,(void *) index[i]);

printf("Main - creating i=%d tid=%d retval=%d\n",i,tid,retval);
thread_id[i] = tid;

}

7This example uses the IEEE POSIX standard interface for a thread library. If your system supports POSIX threads, this
example should work. If not, there should be similar routines on your system for each of the thread functions.
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printf("Main thread - threads started globvar=%d\n",globvar);
for(i=0;i<THREAD_COUNT;i++) {

printf("Main - waiting for join %d\n",thread_id[i]);
retval = pthread_join( thread_id[i], NULL ) ;

printf("Main - back from join %d retval=%d\n",i,retval);
}

printf("Main thread - threads completed globvar=%d\n",globvar);
}

void *TestFunc(void *parm) {

int me,self;

me = (int) parm; /* My own assigned thread ordinal */

self = pthread_self(); /* The POSIX Thread library thread number */

printf("TestFunc me=%d - self=%d globvar=%d\n",me,self,globvar);
globvar = me + 15;

printf("TestFunc me=%d - sleeping globvar=%d\n",me,globvar);
sleep(2);

printf("TestFunc me=%d - done param=%d globvar=%d\n",me,self,globvar);
}
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Figure 10-7: Creating a thread

Figure 5.7

The global shared areas in this case are those variables declared in the static area outside the main( ) code.
The local variables are any variables declared within a routine. When threads are added, each thread gets
its own function call stack. In C, the automatic variables that are declared at the beginning of each routine
are allocated on the stack. As each thread enters a function, these variables are separately allocated on that
particular thread's stack. So these are the thread-local variables.

Unlike the fork( ) function, the pthread_create( ) function creates a new thread, and then control is
returned to the calling thread. One of the parameters of the pthread_create( ) is the name of a function.

New threads begin execution in the function TestFunc( ) and the thread �nishes when it returns from
this function. When this program is executed, it produces the following output:

recs % cc -o create1 -lpthread -lposix4 create1.c

recs % create1
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Main - globvar=0

Main - creating i=0 tid=4 retval=0

Main - creating i=1 tid=5 retval=0

Main - creating i=2 tid=6 retval=0

Main thread - threads started globvar=0

Main - waiting for join 4

TestFunc me=0 - self=4 globvar=0

TestFunc me=0 - sleeping globvar=15

TestFunc me=1 - self=5 globvar=15

TestFunc me=1 - sleeping globvar=16

TestFunc me=2 - self=6 globvar=16

TestFunc me=2 - sleeping globvar=17

TestFunc me=2 - done param=6 globvar=17

TestFunc me=1 - done param=5 globvar=17

TestFunc me=0 - done param=4 globvar=17

Main - back from join 0 retval=0

Main - waiting for join 5

Main - back from join 1 retval=0

Main - waiting for join 6

Main - back from join 2 retval=0

Main thread -- threads completed globvar=17

recs %

You can see the threads getting created in the loop. The master thread completes the pthread_create( )

loop, executes the second loop, and calls the pthread_join( ) function. This function suspends the master
thread until the speci�ed thread completes. The master thread is waiting for Thread 4 to complete. Once
the master thread suspends, one of the new threads is started. Thread 4 starts executing. Initially the
variable globvar is set to 0 from the main program. The self, me, and param variables are thread-local
variables, so each thread has its own copy. Thread 4 sets globvar to 15 and goes to sleep. Then Thread 5
begins to execute and sees globvar set to 15 from Thread 4; Thread 5 sets globvar to 16, and goes to sleep.
This activates Thread 6, which sees the current value for globvar and sets it to 17. Then Threads 6, 5, and
4 wake up from their sleep, all notice the latest value of 17 in globvar, and return from the TestFunc( )

routine, ending the threads.
All this time, the master thread is in the middle of a pthread_join( ) waiting for Thread 4 to complete.

As Thread 4 completes, the pthread_join( ) returns. The master thread then calls pthread_join( )

repeatedly to ensure that all three threads have been completed. Finally, the master thread prints out the
value for globvar that contains the latest value of 17.

To summarize, when an application is executing with more than one thread, there are shared global areas
and thread private areas. Di�erent threads execute at di�erent times, and they can easily work together in
shared areas.

5.3.1.4 Limitations of user space multithreading

Multithreaded applications were around long before multiprocessors existed. It is quite practical to have
multiple threads with a single CPU. As a matter of fact, the previous example would run on a system with
any number of processors, including one. If you look closely at the code, it performs a sleep operation at each
critical point in the code. One reason to add the sleep calls is to slow the program down enough that you can
actually see what is going on. However, these sleep calls also have another e�ect. When one thread enters
the sleep routine, it causes the thread library to search for other �runnable� threads. If a runnable thread
is found, it begins executing immediately while the calling thread is �sleeping.� This is called a user-space

thread context switch. The process actually has one operating system thread shared among several logical
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user threads. When library routines (such as sleep) are called, the thread library8 jumps in and reschedules
threads.

We can explore this e�ect by substituting the following SpinFunc( ) function, replacing TestFunc( )

function in the pthread_create( ) call in the previous example:

void *SpinFunc(void *parm) {

int me;

me = (int) parm;

printf("SpinFunc me=%d - sleeping %d seconds ...\n", me, me+1);

sleep(me+1);

printf("SpinFunc me=%d -- wake globvar=%d...\n", me, globvar);

globvar ++;

printf("SpinFunc me=%d - spinning globvar=%d...\n", me, globvar);

while(globvar < THREAD_COUNT ) ;

printf("SpinFunc me=%d -- done globvar=%d...\n", me, globvar);

sleep(THREAD_COUNT+1);

}

If you look at the function, each thread entering this function prints a message and goes to sleep for 1, 2,
and 3 seconds. Then the function increments globvar (initially set to 0 in main) and begins a while-loop,
continuously checking the value of globvar. As time passes, the second and third threads should �nish
their sleep( ), increment the value for globvar, and begin the while-loop. When the last thread reaches
the loop, the value for globvar is 3 and all the threads exit the loop. However, this isn't what happens:

recs % create2 &

[1] 23921

recs %

Main - globvar=0

Main - creating i=0 tid=4 retval=0

Main - creating i=1 tid=5 retval=0

Main - creating i=2 tid=6 retval=0

Main thread - threads started globvar=0

Main - waiting for join 4

SpinFunc me=0 - sleeping 1 seconds ...

SpinFunc me=1 - sleeping 2 seconds ...

SpinFunc me=2 - sleeping 3 seconds ...

SpinFunc me=0 - wake globvar=0...

SpinFunc me=0 - spinning globvar=1...

recs % ps

PID TTY TIME CMD

23921 pts/35 0:09 create2

recs % ps

PID TTY TIME CMD

8The pthreads library supports both user-space threads and operating-system threads, as we shall soon see. Another popular
early threads package was called cthreads.
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23921 pts/35 1:16 create2

recs % kill -9 23921

[1] Killed create2

recs %

We run the program in the background9 and everything seems to run �ne. All the threads go to sleep for 1,
2, and 3 seconds. The �rst thread wakes up and starts the loop waiting for globvar to be incremented by
the other threads. Unfortunately, with user space threads, there is no automatic time sharing. Because we
are in a CPU loop that never makes a system call, the second and third threads never get scheduled so they
can complete their sleep( ) call. To �x this problem, we need to make the following change to the code:

while(globvar < THREAD_COUNT ) sleep(1) ;

With this sleep10 call, Threads 2 and 3 get a chance to be �scheduled.� They then �nish their sleep calls,
increment the globvar variable, and the program terminates properly.

You might ask the question, �Then what is the point of user space threads?� Well, when there is a high
performance database server or Internet server, the multiple logical threads can overlap network I/O with
database I/O and other background computations. This technique is not so useful when the threads all
want to perform simultaneous CPU-intensive computations. To do this, you need threads that are created,
managed, and scheduled by the operating system rather than a user library.

5.3.1.5 Operating System-Supported Multithreading

When the operating system supports multiple threads per process, you can begin to use these threads to
do simultaneous computational activity. There is still no requirement that these applications be executed
on a multiprocessor system. When an application that uses four operating system threads is executed on
a single processor machine, the threads execute in a time-shared fashion. If there is no other load on the
system, each thread gets 1/4 of the processor. While there are good reasons to have more threads than
processors for noncompute applications, it's not a good idea to have more active threads than processors for
compute-intensive applications because of thread-switching overhead. (For more detail on the e�ect of too
many threads, see Appendix D, How FORTRAN Manages Threads at Runtime.

If you are using the POSIX threads library, it is a simple modi�cation to request that your threads be
created as operating-system rather rather than user threads, as the following code shows:

#define _REENTRANT /* basic 3-lines for threads */

#include <stdio.h>
#include <pthread.h>

#define THREAD_COUNT 2

void *SpinFunc(void *);

int globvar; /* A global variable */

int index[THREAD_COUNT]; /* Local zero-based thread index */

pthread_t thread_id[THREAD_COUNT]; /* POSIX Thread IDs */

pthread_attr_t attr; /* Thread attributes NULL=use default */

9Because we know it will hang and ignore interrupts.
10Some thread libraries support a call to a routine sched_yield( ) that checks for runnable threads. If it �nds a runnable

thread, it runs the thread. If no thread is runnable, it returns immediately to the calling thread. This routine allows a thread
that has the CPU to ensure that other threads make progress during CPU-intensive periods of its code.
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main() {

int i,retval;

pthread_t tid;

globvar = 0;

pthread_attr_init(&attr); /* Initialize attr with defaults */

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

printf("Main - globvar=%d\n",globvar);
for(i=0;i<THREAD_COUNT;i++) {

index[i] = i;

retval = pthread_create(&tid,&attr,SpinFunc,(void *) index[i]);

printf("Main - creating i=%d tid=%d retval=%d\n",i,tid,retval);
thread_id[i] = tid;

}

printf("Main thread - threads started globvar=%d\n",globvar);
for(i=0;i<THREAD_COUNT;i++) {

printf("Main - waiting for join %d\n",thread_id[i]);
retval = pthread_join( thread_id[i], NULL ) ;

printf("Main - back from join %d retval=%d\n",i,retval);
}

printf("Main thread - threads completed globvar=%d\n",globvar);
}

The code executed by the master thread is modi�ed slightly. We create an �attribute� data structure and
set the PTHREAD_SCOPE_SYSTEM attribute to indicate that we would like our new threads to be created and
scheduled by the operating system. We use the attribute information on the call to pthread_create( ).
None of the other code has been changed. The following is the execution output of this new program:

recs % create3

Main - globvar=0

Main - creating i=0 tid=4 retval=0

SpinFunc me=0 - sleeping 1 seconds ...

Main - creating i=1 tid=5 retval=0

Main thread - threads started globvar=0

Main - waiting for join 4

SpinFunc me=1 - sleeping 2 seconds ...

SpinFunc me=0 - wake globvar=0...

SpinFunc me=0 - spinning globvar=1...

SpinFunc me=1 - wake globvar=1...

SpinFunc me=1 - spinning globvar=2...

SpinFunc me=1 - done globvar=2...

SpinFunc me=0 - done globvar=2...

Main - back from join 0 retval=0

Main - waiting for join 5

Main - back from join 1 retval=0

Main thread - threads completed globvar=2

recs %
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Now the program executes properly. When the �rst thread starts spinning, the operating system is context
switching between all three threads. As the threads come out of their sleep( ), they increment their shared
variable, and when the �nal thread increments the shared variable, the other two threads instantly notice
the new value (because of the cache coherency protocol) and �nish the loop. If there are fewer than three
CPUs, a thread may have to wait for a time-sharing context switch to occur before it notices the updated
global variable.

With operating-system threads and multiple processors, a program can realistically break up a large
computation between several independent threads and compute the solution more quickly. Of course this
presupposes that the computation could be done in parallel in the �rst place.

5.4 Techniques for Multithreaded Programs11

5.4.1 Techniques for Multithreaded Programs

Given that we have multithreaded capabilities and multiprocessors, we must still convince the threads to
work together to accomplish some overall goal. Often we need some ways to coordinate and cooperate
between the threads. There are several important techniques that are used while the program is running
with multiple threads, including:

• Fork-join (or create-join) programming
• Synchronization using a critical section with a lock, semaphore, or mutex
• Barriers

Each of these techniques has an overhead associated with it. Because these overheads are necessary to go
parallel, we must make sure that we have su�cient work to make the bene�t of parallel operation worth the
cost.

5.4.1.1 Fork-Join Programming

This approach is the simplest method of coordinating your threads. As in the earlier examples in this chapter,
a master thread sets up some global data structures that describe the tasks each thread is to perform and
then use the pthread_create( ) function to activate the proper number of threads. Each thread checks
the global data structure using its thread-id as an index to �nd its task. The thread then performs the task
and completes. The master thread waits at a pthread_join( ) point, and when a thread has completed,
it updates the global data structure and creates a new thread. These steps are repeated for each major
iteration (such as a time-step) for the duration of the program:

for(ts=0;ts<10000;ts++) { /* Time Step Loop */

/* Setup tasks */

for (ith=0;ith<NUM_THREADS;ith++) pthread_create(..,work_routine,..)

for (ith=0;ith<NUM_THREADS;ith++) pthread_join(...)

}

work_routine() {

/* Perform Task */

return;

}

11This content is available online at <http://cnx.org/content/m32802/1.1/>.



90 CHAPTER 5. SHARED-MEMORY MULTIPROCESSORS

The shortcoming of this approach is the overhead cost associated with creating and destroying an operating
system thread for a potentially very short task.

The other approach is to have the threads created at the beginning of the program and to have them
communicate amongst themselves throughout the duration of the application. To do this, they use such
techniques as critical sections or barriers.

5.4.1.2 Synchronization

Synchronization is needed when there is a particular operation to a shared variable that can only be performed
by one processor at a time. For example, in previous SpinFunc( ) examples, consider the line:

globvar++;

In assembly language, this takes at least three instructions:

LOAD R1,globvar

ADD R1,1

STORE R1,globvar

What if globvar contained 0, Thread 1 was running, and, at the precise moment it completed the LOAD into
Register R1 and before it had completed the ADD or STORE instructions, the operating system interrupted the
thread and switched to Thread 2? Thread 2 catches up and executes all three instructions using its registers:
loading 0, adding 1 and storing the 1 back into globvar. Now Thread 2 goes to sleep and Thread 1 is
restarted at the ADD instruction. Register R1 for Thread 1 contains the previously loaded value of 0; Thread
1 adds 1 and then stores 1 into globvar. What is wrong with this picture? We meant to use this code to
count the number of threads that have passed this point. Two threads passed the point, but because of a
bad case of bad timing, our variable indicates only that one thread passed. This is because the increment of
a variable in memory is not atomic. That is, halfway through the increment, something else can happen.

Another way we can have a problem is on a multiprocessor when two processors execute these instructions
simultaneously. They both do the LOAD, getting 0. Then they both add 1 and store 1 back to memory.12

Which processor actually got the honor of storing their 1 back to memory is simply a race.
We must have some way of guaranteeing that only one thread can be in these three instructions at the

same time. If one thread has started these instructions, all other threads must wait to enter until the �rst
thread has exited. These areas are called critical sections. On single-CPU systems, there was a simple
solution to critical sections: you could turn o� interrupts for a few instructions and then turn them back
on. This way you could guarantee that you would get all the way through before a timer or other interrupt
occurred:

INTOFF // Turn off Interrupts

LOAD R1,globvar

ADD R1,1

STORE R1,globvar

INTON // Turn on Interrupts

12Boy, this is getting pretty picky. How often will either of these events really happen? Well, if it crashes your airline
reservation system every 100,000 transactions or so, that would be way too often.
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However, this technique does not work for longer critical sections or when there is more than one CPU. In
these cases, you need a lock, a semaphore, or a mutex. Most thread libraries provide this type of routine.
To use a mutex, we have to make some modi�cations to our example code:

...

pthread_mutex_t my_mutex; /* MUTEX data structure */

...

main() {

...

pthread_attr_init(&attr); /* Initialize attr with defaults */

pthread_mutex_init (&my_mutex, NULL);

.... pthread_create( ... )

...

}

void *SpinFunc(void *parm) {

...

pthread_mutex_lock (&my_mutex);

globvar ++;

pthread_mutex_unlock (&my_mutex);

while(globvar < THREAD_COUNT ) ;

printf("SpinFunc me=%d -- done globvar=%d...\n", me, globvar);

...

}

The mutex data structure must be declared in the shared area of the program. Before the threads are
created, pthread_mutex_init must be called to initialize the mutex. Before globvar is incremented, we
must lock the mutex and after we �nish updating globvar (three instructions later), we unlock the mutex.
With the code as shown above, there will never be more than one processor executing the globvar++ line
of code, and the code will never hang because an increment was missed. Semaphores and locks are used in
a similar way.

Interestingly, when using user space threads, an attempt to lock an already locked mutex, semaphore, or
lock can cause a thread context switch. This allows the thread that �owns� the lock a better chance to make
progress toward the point where they will unlock the critical section. Also, the act of unlocking a mutex can
cause the thread waiting for the mutex to be dispatched by the thread library.

5.4.1.3 Barriers

Barriers are di�erent than critical sections. Sometimes in a multithreaded application, you need to have all
threads arrive at a point before allowing any threads to execute beyond that point. An example of this is
a time-based simulation. Each task processes its portion of the simulation but must wait until all of the
threads have completed the current time step before any thread can begin the next time step. Typically
threads are created, and then each thread executes a loop with one or more barriers in the loop. The rough
pseudocode for this type of approach is as follows:

main() {

for (ith=0;ith<NUM_THREADS;ith++) pthread_create(..,work_routine,..)

for (ith=0;ith<NUM_THREADS;ith++) pthread_join(...) /* Wait a long time */

exit()

}
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work_routine() {

for(ts=0;ts<10000;ts++) { /* Time Step Loop */

/* Compute total forces on particles */

wait_barrier();

/* Update particle positions based on the forces */

wait_barrier();

}

return;

}

In a sense, our SpinFunc( ) function implements a barrier. It sets a variable initially to 0. Then as threads
arrive, the variable is incremented in a critical section. Immediately after the critical section, the thread
spins until the precise moment that all the threads are in the spin loop, at which time all threads exit the
spin loop and continue on.

For a critical section, only one processor can be executing in the critical section at the same time. For a
barrier, all processors must arrive at the barrier before any of the processors can leave.

5.5 A Real Example 13

5.5.1 A Real Example

In all of the above examples, we have focused on the mechanics of shared memory, thread creation, and
thread termination. We have used the sleep( ) routine to slow things down su�ciently to see interactions
between processes. But we want to go very fast, not just learn threading for threading's sake.

The example code below uses the multithreading techniques described in this chapter to speed up a sum
of a large array. The hpcwall routine is from Chapter 6, Timing and Pro�ling.

This code allocates a four-million-element double-precision array and �lls it with random numbers be-
tween 0 and 1. Then using one, two, three, and four threads, it sums up the elements in the array:

#define _REENTRANT /* basic 3-lines for threads */

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define MAX_THREAD 4

void *SumFunc(void *);

int ThreadCount; /* Threads on this try */

double GlobSum; /* A global variable */

int index[MAX_THREAD]; /* Local zero-based thread index */

pthread_t thread_id[MAX_THREAD]; /* POSIX Thread IDs */

pthread_attr_t attr; /* Thread attributes NULL=use default */

pthread_mutex_t my_mutex; /* MUTEX data structure */

#define MAX_SIZE 4000000

double array[MAX_SIZE]; /* What we are summing... */

void hpcwall(double *);

13This content is available online at <http://cnx.org/content/m32804/1.1/>.
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main() {

int i,retval;

pthread_t tid;

double single,multi,begtime,endtime;

/* Initialize things */

for (i=0; i<MAX_SIZE; i++) array[i] = drand48();

pthread_attr_init(&attr); /* Initialize attr with defaults */

pthread_mutex_init (&my_mutex, NULL);

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* Single threaded sum */

GlobSum = 0;

hpcwall(&begtime);

for(i=0; i<MAX_SIZE;i++) GlobSum = GlobSum + array[i];

hpcwall(&endtime);

single = endtime - begtime;

printf("Single sum=%lf time=%lf\n",GlobSum,single);

/* Use different numbers of threads to accomplish the same thing */

for(ThreadCount=2;ThreadCount<=MAX_THREAD; ThreadCount++) {

printf("Threads=%d\n",ThreadCount);
GlobSum = 0;

hpcwall(&begtime);

for(i=0;i<ThreadCount;i++) {

index[i] = i;

retval = pthread_create(&tid,&attr,SumFunc,(void *) index[i]);

thread_id[i] = tid;

}

for(i=0;i<ThreadCount;i++) retval = pthread_join(thread_id[i],NULL);

hpcwall(&endtime);

multi = endtime - begtime;

printf("Sum=%lf time=%lf\n",GlobSum,multi);
printf("Efficiency = %lf\n",single/(multi*ThreadCount));

} /* End of the ThreadCount loop */

}

void *SumFunc(void *parm){

int i,me,chunk,start,end;

double LocSum;

/* Decide which iterations belong to me */

me = (int) parm;

chunk = MAX_SIZE / ThreadCount;

start = me * chunk;

end = start + chunk; /* C-Style - actual element + 1 */

if ( me == (ThreadCount-1) ) end = MAX_SIZE;

printf("SumFunc me=%d start=%d end=%d\n",me,start,end);

/* Compute sum of our subset*/

LocSum = 0;
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for(i=start;i<end;i++ ) LocSum = LocSum + array[i];

/* Update the global sum and return to the waiting join */

pthread_mutex_lock (&my_mutex);

GlobSum = GlobSum + LocSum;

pthread_mutex_unlock (&my_mutex);

}

First, the code performs the sum using a single thread using a for-loop. Then for each of the parallel sums,
it creates the appropriate number of threads that call SumFunc( ). Each thread starts in SumFunc( ) and
initially chooses an area to operation in the shared array. The �strip� is chosen by dividing the overall array
up evenly among the threads with the last thread getting a few extra if the division has a remainder.

Then, each thread independently performs the sum on its area. When a thread has �nished its compu-
tation, it uses a mutex to update the global sum variable with its contribution to the global sum:

recs % addup

Single sum=7999998000000.000000 time=0.256624

Threads=2

SumFunc me=0 start=0 end=2000000

SumFunc me=1 start=2000000 end=4000000

Sum=7999998000000.000000 time=0.133530

Efficiency = 0.960923

Threads=3

SumFunc me=0 start=0 end=1333333

SumFunc me=1 start=1333333 end=2666666

SumFunc me=2 start=2666666 end=4000000

Sum=7999998000000.000000 time=0.091018

Efficiency = 0.939829

Threads=4

SumFunc me=0 start=0 end=1000000

SumFunc me=1 start=1000000 end=2000000

SumFunc me=2 start=2000000 end=3000000

SumFunc me=3 start=3000000 end=4000000

Sum=7999998000000.000000 time=0.107473

Efficiency = 0.596950

recs %

There are some interesting patterns. Before you interpret the patterns, you must know that this system is
a three-processor Sun Enterprise 3000. Note that as we go from one to two threads, the time is reduced to
one-half. That is a good result given how much it costs for that extra CPU. We characterize how well the
additional resources have been used by computing an e�ciency factor that should be 1.0. This is computed
by multiplying the wall time by the number of threads. Then the time it takes on a single processor is divided
by this number. If you are using the extra processors well, this evaluates to 1.0. If the extra processors are
used pretty well, this would be about 0.9. If you had two threads, and the computation did not speed up at
all, you would get 0.5.

At two and three threads, wall time is dropping, and the e�ciency is well over 0.9. However, at four
threads, the wall time increases, and our e�ciency drops very dramatically. This is because we now have
more threads than processors. Even though we have four threads that could execute, they must be time-
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sliced between three processors.14 This is even worse that it might seem. As threads are switched, they move
from processor to processor and their caches must also move from processor to processor, further slowing
performance. This cache-thrashing e�ect is not too apparent in this example because the data structure is
so large, most memory references are not to values previously in cache.

It's important to note that because of the nature of �oating-point (see Chapter 4, Floating-Point Num-
bers), the parallel sum may not be the same as the serial sum. To perform a summation in parallel, you
must be willing to tolerate these slight variations in your results.

5.6 Closing Notes15

5.6.1 Closing Notes

As they drop in price, multiprocessor systems are becoming far more common. These systems have many
attractive features, including good price/performance, compatibility with workstations, large memories, high
throughput, large shared memories, fast I/O, and many others. While these systems are strong in multipro-
grammed server roles, they are also an a�ordable high performance computing resource for many organiza-
tions. Their cache-coherent shared-memory model allows multithreaded applications to be easily developed.

We have also examined some of the software paradigms that must be used to develop multithreaded
applications. While you hopefully will never have to write C code with explicit threads like the examples in
this chapter, it is nice to understand the fundamental operations at work on these multiprocessor systems.
Using the FORTRAN language with an automatic parallelizing compiler, we have the advantage that these
and many more details are left to the FORTRAN compiler and runtime library. At some point, especially
on the most advanced architectures, you may have to explicitly program a multithreaded program using the
types of techniques shown in this chapter.

One trend that has been predicted for some time is that we will begin to see multiple cache-coherent
CPUs on a single chip once the ability to increase the clock rate on a single chip slows down. Imagine that
your new $2000 workstation has four 1-GHz processors on a single chip. Sounds like a good time to learn
how to write multithreaded programs!

5.7 Exercises16

5.7.1 Exercises

Exercise 5.1
Experiment with the fork code in this chapter. Run the program multiple times and see how the
order of the messages changes. Explain the results.

Exercise 5.2
Experiment with the create1 and create3 codes in this chapter. Remove all of the sleep( )

calls. Execute the programs several times on single and multiprocessor systems. Can you explain
why the output changes from run to run in some situations and doesn't change in others?

Exercise 5.3
Experiment with the parallel sum code in this chapter. In the SumFunc( ) routine, change the
for-loop to:

for(i=start;i<end;i++ ) GlobSum = GlobSum + array[i];

14It is important to match the number of runnable threads to the available resources. In compute code, when there are
more threads than available processors, the threads compete among themselves, causing unnecessary overhead and reducing
the e�ciency of your computation. See Appendix D for more details.

15This content is available online at <http://cnx.org/content/m32807/1.1/>.
16This content is available online at <http://cnx.org/content/m32810/1.1/>.
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Remove the three lines at the end that get the mutex and update the GlobSum. Execute the
code. Explain the di�erence in values that you see for GlobSum. Are the patterns di�erent on a
single processor and a multiprocessor? Explain the performance impact on a single processor and
a multiprocessor.

Exercise 5.4
Explain how the following code segment could cause deadlock � two or more processes waiting
for a resource that can't be relinquished:

...

call lock (lword1)

call lock (lword2)

...

call unlock (lword1)

call unlock (lword2)

.

.

.

call lock (lword2)

call lock (lword1)

...

call unlock (lword2)

call unlock (lword1)

...

Exercise 5.5
If you were to code the functionality of a spin-lock in C, it might look like this:

while (!lockword);

lockword = !lockword;

As you know from the �rst sections of the book, the same statements would be compiled into explicit
loads and stores, a comparison, and a branch. There's a danger that two processes could each load
lockword, �nd it unset, and continue on as if they owned the lock (we have a race condition). This
suggests that spin-locks are implemented di�erently � that they're not merely the two lines of C
above. How do you suppose they are implemented?



Chapter 6

Programming Shared-Memory

Multiprocessors

6.1 Introduction1

6.1.1 Programming Shared-Memory Multiprocessors

In Chapter 10, Shared-Memory Multiprocessors, we examined the hardware used to implement shared-
memory parallel processors and the software environment for a programmer who is using threads explicitly.
In this chapter, we view these processors from a simpler vantage point. When programming these systems
in FORTRAN, you have the advantage of the compiler's support of these systems. At the top end of ease
of use, we can simply add a �ag or two on the compilation of our well-written code, set an environment
variable, and voilá, we are executing in parallel. If you want some more control, you can add directives
to particular loops where you know better than the compiler how the loop should be executed.2 First we
examine how well-written loops can bene�t from automatic parallelism. Then we will look at the types of
directives you can add to your program to assist the compiler in generating parallel code. While this chapter
refers to running your code in parallel, most of the techniques apply to the vector-processor supercomputers
as well.

6.2 Automatic Parallelization3

6.2.1 Automatic Parallelization

So far in the book, we've covered the tough things you need to know to do parallel processing. At this point,
assuming that your loops are clean, they use unit stride, and the iterations can all be done in parallel, all you
have to do is turn on a compiler �ag and buy a good parallel processor. For example, look at the following
code:

PARAMETER(NITER=300,N=1000000)

1This content is available online at <http://cnx.org/content/m32812/1.1/>.
2If you have skipped all the other chapters in the book and jumped to this one, don't be surprised if some of the terminology

is unfamiliar. While all those chapters seemed to contain endless boring detail, they did contain some basic terminology. So
those of us who read all those chapters have some common terminology needed for this chapter. If you don't go back and read
all the chapters, don't complain about the big words we keep using in this chapter!

3This content is available online at <http://cnx.org/content/m32821/1.1/>.

97



98 CHAPTER 6. PROGRAMMING SHARED-MEMORY MULTIPROCESSORS

REAL*8 A(N),X(N),B(N),C

DO ITIME=1,NITER

DO I=1,N

A(I) = X(I) + B(I) * C

ENDDO

CALL WHATEVER(A,X,B,C)

ENDDO

Here we have an iterative code that satis�es all the criteria for a good parallel loop. On a good parallel
processor with a modern compiler, you are two �ags away from executing in parallel. On Sun Solaris
systems, the autopar �ag turns on the automatic parallelization, and the loopinfo �ag causes the compiler
to describe the particular optimization performed for each loop. To compile this code under Solaris, you
simply add these �ags to your f77 call:

E6000: f77 -O3 -autopar -loopinfo -o daxpy daxpy.f

daxpy.f:

"daxpy.f", line 6: not parallelized, call may be unsafe

"daxpy.f", line 8: PARALLELIZED

E6000: /bin/time daxpy

real 30.9

user 30.7

sys 0.1

E6000:

If you simply run the code, it's executed using one thread. However, the code is enabled for parallel processing
for those loops that can be executed in parallel. To execute the code in parallel, you need to set the UNIX
environment to the number of parallel threads you wish to use to execute the code. On Solaris, this is done
using the PARALLEL variable:

E6000: setenv PARALLEL 1

E6000: /bin/time daxpy

real 30.9

user 30.7

sys 0.1

E6000: setenv PARALLEL 2

E6000: /bin/time daxpy

real 15.6

user 31.0

sys 0.2

E6000: setenv PARALLEL 4

E6000: /bin/time daxpy
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real 8.2

user 32.0

sys 0.5

E6000: setenv PARALLEL 8

E6000: /bin/time daxpy

real 4.3

user 33.0

sys 0.8

Speedup is the term used to capture how much faster the job runs using N processors compared to the
performance on one processor. It is computed by dividing the single processor time by the multiprocessor
time for each number of processors. Figure 6.1 (Figure 11-1: Improving performance by adding processors)
shows the wall time and speedup for this application.

Figure 11-1: Improving performance by adding processors

Figure 6.1

Figure 6.2 (Figure 11-2: Ideal and actual performance improvement) shows this information graphically,
plotting speedup versus the number of processors.
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Figure 11-2: Ideal and actual performance improvement

Figure 6.2

Note that for a while we get nearly perfect speedup, but we begin to see a measurable drop in speedup at
four and eight processors. There are several causes for this. In all parallel applications, there is some portion
of the code that can't run in parallel. During those nonparallel times, the other processors are waiting for
work and aren't contributing to e�ciency. This nonparallel code begins to a�ect the overall performance as
more processors are added to the application.

So you say, �this is more like it!� and immediately try to run with 12 and 16 threads. Now, we see the
graph in Figure 6.4 (Figure 11-4: Diminishing returns) and the data from Figure 6.3 (Figure 11-3: Increasing
the number of threads).
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Figure 11-3: Increasing the number of threads

Figure 6.3

Figure 11-4: Diminishing returns

Figure 6.4
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What has happened here? Things were going so well, and then they slowed down. We are running this
program on a 16-processor system, and there are eight other active threads, as indicated below:

E6000:uptime

4:00pm up 19 day(s), 37 min(s), 5 users, load average: 8.00, 8.05, 8.14

E6000:

Once we pass eight threads, there are no available processors for our threads. So the threads must be time-
shared between the processors, signi�cantly slowing the overall operation. By the end, we are executing 16
threads on eight processors, and our performance is slower than with one thread. So it is important that
you don't create too many threads in these types of applications.4

6.2.1.1 Compiler Considerations

Improving performance by turning on automatic parallelization is an example of the �smarter compiler� we
discussed in earlier chapters. The addition of a single compiler �ag has triggered a great deal of analysis on
the part of the compiler including:

• Which loops can execute in parallel, producing the exact same results as the sequential executions of
the loops? This is done by checking for dependencies that span iterations. A loop with no interiteration
dependencies is called a DOALL loop.

• Which loops are worth executing in parallel? Generally very short loops gain no bene�t and may
execute more slowly when executing in parallel. As with loop unrolling, parallelism always has a cost.
It is best used when the bene�t far outweighs the cost.

• In a loop nest, which loop is the best candidate to be parallelized? Generally the best performance
occurs when we parallelize the outermost loop of a loop nest. This way the overhead associated with
beginning a parallel loop is amortized over a longer parallel loop duration.

• Can and should the loop nest be interchanged? The compiler may detect that the loops in a nest
can be done in any order. One order may work very well for parallel code while giving poor memory
performance. Another order may give unit stride but perform poorly with multiple threads. The
compiler must analyze the cost/bene�t of each approach and make the best choice.

• How do we break up the iterations among the threads executing a parallel loop? Are the iterations
short with uniform duration, or long with wide variation of execution time? We will see that there
are a number of di�erent ways to accomplish this. When the programmer has given no guidance, the
compiler must make an educated guess.

Even though it seems complicated, the compiler can do a surprisingly good job on a wide variety of codes.
It is not magic, however. For example, in the following code we have a loop-carried �ow dependency:

PROGRAM DEP

PARAMETER(NITER=300,N=1000000)

REAL*4 A(N)

4In Appendix D, How FORTRAN Manages Threads at Runtime, when we look at how the FORTRAN runtime library
operates on these systems it will be much clearer why having more threads than avail- able processors has such a negative
impact on performance.
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DO ITIME=1,NITER

CALL WHATEVER(A)

DO I=2,N

A(I) = A(I-1) + A(I) * C

ENDDO

ENDDO

END

When we compile the code, the compiler gives us the following message:
dep.f:

E6000: f77 -O3 -autopar -loopinfo -o dep dep.f

dep.f:

"dep.f", line 6: not parallelized, call may be unsafe

"dep.f", line 8: not parallelized, unsafe dependence (a)

E6000:

The compiler throws its hands up in despair, and lets you know that the loop at Line 8 had an unsafe
dependence, and so it won't automatically parallelize the loop. When the code is executed below, adding a
thread does not a�ect the execution performance:

E6000:setenv PARALLEL 1

E6000:/bin/time dep

real 18.1

user 18.1

sys 0.0

E6000:setenv PARALLEL 2

E6000:/bin/time dep

real 18.3

user 18.2

sys 0.0

E6000:

A typical application has many loops. Not all the loops are executed in parallel. It's a good idea to run a
pro�le of your application, and in the routines that use most of the CPU time, check to �nd out which loops
are not being parallelized. Within a loop nest, the compiler generally chooses only one loop to execute in
parallel.

6.2.1.2 Other Compiler Flags

In addition to the �ags shown above, you may have other compiler �ags available to you that apply across
the entire program:
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• You may have a compiler �ag to enable the automatic parallelization of reduction operations. Because
the order of additions can a�ect the �nal value when computing a sum of �oating-point numbers, the
compiler needs permission to parallelize summation loops.

• Flags that relax the compliance with IEEE �oating-point rules may also give the compiler more �ex-
ibility when trying to parallelize a loop. However, you must be sure that it's not causing accuracy
problems in other areas of your code.

• Often a compiler has a �ag called �unsafe optimization� or �assume no dependencies.� While this �ag
may indeed enhance the performance of an application with loops that have dependencies, it almost
certainly produces incorrect results.

There is some value in experimenting with a compiler to see the particular combination that will yield good
performance across a variety of applications. Then that set of compiler options can be used as a starting
point when you encounter a new application.

6.3 Assisting the Compiler5

6.3.1 Assisting the Compiler

If it were all that simple, you wouldn't need this book. While compilers are extremely clever, there is still a
lot of ways to improve the performance of your code without sacri�cing its portability. Instead of converting
the whole program to C and using a thread library, you can assist the compiler by adding compiler directives
to our source code.

Compiler directives are typically inserted in the form of stylized FORTRAN comments. This is done
so that a nonparallelizing compiler can ignore them and just look at the FORTRAN code, sans comments.
This allows to you tune your code for parallel architectures without letting it run badly on a wide range of
single-processor systems.

There are two categories of parallel-processing comments:

• Assertions
• Manual parallelization directives

Assertions tell the compiler certain things that you as the programmer know about the code that it might
not guess by looking at the code. Through the assertions, you are attempting to assuage the compiler's
doubts about whether or not the loop is eligible for parallelization. When you use directives, you are taking
full responsibility for the correct execution of the program. You are telling the compiler what to parallelize
and how to do it. You take full responsibility for the output of the program. If the program produces
meaningless results, you have no one to blame but yourself.

6.3.1.1 Assertions

In a previous example, we compiled a program and received the following output:

E6000: f77 -O3 -autopar -loopinfo -o dep dep.f

dep.f:

"dep.f", line 6: not parallelized, call may be unsafe

"dep.f", line 8: not parallelized, unsafe dependence (a)

E6000:

5This content is available online at <http://cnx.org/content/m32814/1.1/>.
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An uneducated programmer who has not read this book (or has not looked at the code) might exclaim, �What
unsafe dependence, I never put one of those in my code!� and quickly add a no dependencies assertion. This
is the essence of an assertion. Instead of telling the compiler to simply parallelize the loop, the programmer
is telling the compiler that its conclusion that there is a dependence is incorrect. Usually the net result is
that the compiler does indeed parallelize the loop.

We will brie�y review the types of assertions that are typically supported by these compilers. An assertion
is generally added to the code using a stylized comment.

6.3.1.1.1 No dependencies

A no dependencies or ignore dependencies directive tells the compiler that references don't overlap.
That is, it tells the compiler to generate code that may execute incorrectly if there are dependencies. You're
saying, �I know what I'm doing; it's OK to overlap references.� A no dependencies directive might help the
following loop:

DO I=1,N

A(I) = A(I+K) * B(I)

ENDDO

If you know that k is greater than -1 or less than -n, you can get the compiler to parallelize the loop:

C$ASSERT NO_DEPENDENCIES

DO I=1,N

A(I) = A(I+K) * B(I)

ENDDO

Of course, blindly telling the compiler that there are no dependencies is a prescription for disaster. If k

equals -1, the example above becomes a recursive loop.

6.3.1.1.2 Relations

You will often see loops that contain some potential dependencies, making them bad candidates for a no
dependencies directive. However, you may be able to supply some local facts about certain variables. This
allows partial parallelization without compromising the results. In the code below, there are two potential
dependencies because of subscripts involving k and j:

for (i=0; i<n; i++) {

a[i] = a[i+k] * b[i];

c[i] = c[i+j] * b[i];

}
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Perhaps we know that there are no con�icts with references to a[i] and a[i+k]. But maybe we aren't so
sure about c[i] and c[i+j]. Therefore, we can't say in general that there are no dependencies. However, we
may be able to say something explicit about k (like �k is always greater than -1�), leaving j out of it. This
information about the relationship of one expression to another is called a relation assertion. Applying a
relation assertion allows the compiler to apply its optimization to the �rst statement in the loop, giving us
partial parallelization.6

Again, if you supply inaccurate testimony that leads the compiler to make unsafe optimizations, your
answer may be wrong.

6.3.1.1.3 Permutations

As we have seen elsewhere, when elements of an array are indirectly addressed, you have to worry about
whether or not some of the subscripts may be repeated. In the code below, are the values of K(I) all unique?
Or are there duplicates?

DO I=1,N

A(K(I)) = A(K(I)) + B(I) * C

END DO

If you know there are no duplicates in K (i.e., that A(K(I)) is a permutation), you can inform the compiler
so that iterations can execute in parallel. You supply the information using a permutation assertion.

6.3.1.1.4 No equivalences

Equivalenced arrays in FORTRAN programs provide another challenge for the compiler. If any elements of
two equivalenced arrays appear in the same loop, most compilers assume that references could point to the
same memory storage location and optimize very conservatively. This may be true even if it is abundantly
apparent to you that there is no overlap whatsoever.

You inform the compiler that references to equivalenced arrays are safe with a no equivalences assertion.
Of course, if you don't use equivalences, this assertion has no e�ect.

6.3.1.1.5 Trip count

Each loop can be characterized by an average number of iterations. Some loops are never executed or go
around just a few times. Others may go around hundreds of times:

C$ASSERT TRIPCOUNT>100

DO I=L,N

A(I) = B(I) + C(I)

END DO

Your compiler is going to look at every loop as a candidate for unrolling or parallelization. It's working in
the dark, however, because it can't tell which loops are important and tries to optimize them all. This can
lead to the surprising experience of seeing your runtime go up after optimization!

6Notice that, if you were tuning by hand, you could split this loop into two: one parallelizable and one not.
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A trip count assertion provides a clue to the compiler that helps it decide how much to unroll a loop
or when to parallelize a loop.7 Loops that aren't important can be identi�ed with low or zero trip counts.
Important loops have high trip counts.

6.3.1.1.6 Inline substitution

If your compiler supports procedure inlining, you can use directives and command-line switches to specify
how many nested levels of procedures you would like to inline, thresholds for procedure size, etc. The vendor
will have chosen reasonable defaults.

Assertions also let you choose subroutines that you think are good candidates for inlining. However,
subject to its thresholds, the compiler may reject your choices. Inlining could expand the code so much
that increased memory activity would claim back gains made by eliminating the procedure call. At higher
optimization levels, the compiler is often capable of making its own choices for inlining candidates, provided
it can �nd the source code for the routine under consideration.

Some compilers support a feature called interprocedural analysis. When this is done, the compiler looks
across routine boundaries for its data �ow analysis. It can perform signi�cant optimizations across routine
boundaries, including automatic inlining, constant propagation, and others.

6.3.1.1.7 No side e�ects

Without interprocedural analysis, when looking at a loop, if there is a subroutine call in the middle of the
loop, the compiler has to treat the subroutine as if it will have the worst possible side e�ects. Also, it has to
assume that there are dependencies that prevent the routine from executing simultaneously in two di�erent
threads.

Many routines (especially functions) don't have any side e�ects and can execute quite nicely in separate
threads because each thread has its own private call stack and local variables. If the routine is meaty, there
will be a great deal of bene�t in executing it in parallel.

Your computer may allow you to add a directive that tells you if successive sub-routine calls are inde-
pendent:

C$ASSERT NO_SIDE_EFFECTS

DO I=1,N

CALL BIGSTUFF (A,B,C,I,J,K)

END DO

Even if the compiler has all the source code, use of common variables or equivalences may mask call inde-
pendence.

6.3.1.2 Manual Parallelism

At some point, you get tired of giving the compiler advice and hoping that it will reach the conclusion to
parallelize your loop. At that point you move into the realm of manual parallelism. Luckily the programming
model provided in FORTRAN insulates you from much of the details of exactly how multiple threads are
managed at runtime. You generally control explicit parallelism by adding specially formatted comment lines
to your source code. There are a wide variety of formats of these directives. In this section, we use the
syntax that is part of the OpenMP (see 8 ) standard. You generally �nd similar capabilities in each of the

7The assertion is made either by hand or from a pro�ler.
8http://cnx.org/content/m32814/latest/www.openmp.org
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vendor compilers. The precise syntax varies slightly from vendor to vendor. (That alone is a good reason to
have a standard.)

The basic programming model is that you are executing a section of code with either a single thread or
multiple threads. The programmer adds a directive to summon additional threads at various points in the
code. The most basic construct is called the parallel region.

6.3.1.2.1 Parallel regions

In a parallel region, the threads simply appear between two statements of straight-line code. A very trivial
example might be the following using the OpenMP directive syntax:

PROGRAM ONE

EXTERNAL OMP_GET_THREAD_NUM, OMP_GET_MAX_THREADS

INTEGER OMP_GET_THREAD_NUM, OMP_GET_MAX_THREADS

IGLOB = OMP_GET_MAX_THREADS()

PRINT *,'Hello There'

C$OMP PARALLEL PRIVATE(IAM), SHARED(IGLOB)

IAM = OMP_GET_THREAD_NUM()

PRINT *, 'I am ', IAM, ' of ', IGLOB

C$OMP END PARALLEL

PRINT *,'All Done'

END

The C$OMP is the sentinel that indicates that this is a directive and not just another comment. The output
of the program when run looks as follows:

% setenv OMP_NUM_THREADS 4

% a.out

Hello There

I am 0 of 4

I am 3 of 4

I am 1 of 4

I am 2 of 4

All Done

%

Execution begins with a single thread. As the program encounters the PARALLEL directive, the other threads
are activated to join the computation. So in a sense, as execution passes the �rst directive, one thread
becomes four. Four threads execute the two statements between the directives. As the threads are executing
independently, the order in which the print statements are displayed is somewhat random. The threads wait
at the END PARALLEL directive until all threads have arrived. Once all threads have completed the parallel
region, a single thread continues executing the remainder of the program.

In Figure 6.5 (Figure 11-5: data interactions during a parallel region), the PRIVATE(IAM) indicates that
the IAM variable is not shared across all the threads but instead, each thread has its own private version of
the variable. The IGLOB variable is shared across all the threads. Any modi�cation of IGLOB appears in all
the other threads instantly, within the limitations of the cache coherency.
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Figure 11-5: data interactions during a parallel region

Figure 6.5

During the parallel region, the programmer typically divides the work among the threads. This pattern of
going from single-threaded to multithreaded execution may be repeated many times throughout the execution
of an application.

Because input and output are generally not thread-safe, to be completely correct, we should indicate that
the print statement in the parallel section is only to be executed on one processor at any one time. We use a
directive to indicate that this section of code is a critical section. A lock or other synchronization mechanism
ensures that no more than one processor is executing the statements in the critical section at any one time:

C$OMP CRITICAL

PRINT *, 'I am ', IAM, ' of ', IGLOB

C$OMP END CRITICAL

6.3.1.2.2 Parallel loops

Quite often the areas of the code that are most valuable to execute in parallel are loops. Consider the
following loop:
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DO I=1,1000000

TMP1 = ( A(I) ** 2 ) + ( B(I) ** 2 )

TMP2 = SQRT(TMP1)

B(I) = TMP2

ENDDO

To manually parallelize this loop, we insert a directive at the beginning of the loop:

C$OMP PARALLEL DO

DO I=1,1000000

TMP1 = ( A(I) ** 2 ) + ( B(I) ** 2 )

TMP2 = SQRT(TMP1)

B(I) = TMP2

ENDDO

C$OMP END PARALLEL DO

When this statement is encountered at runtime, the single thread again summons the other threads to join
the computation. However, before the threads can start working on the loop, there are a few details that
must be handled. The PARALLEL DO directive accepts the data classi�cation and scoping clauses as in the
parallel section directive earlier. We must indicate which variables are shared across all threads and which
variables have a separate copy in each thread. It would be a disaster to have TMP1 and TMP2 shared across
threads. As one thread takes the square root of TMP1, another thread would be resetting the contents of
TMP1. A(I) and B(I) come from outside the loop, so they must be shared. We need to augment the directive
as follows:

C$OMP PARALLEL DO SHARED(A,B) PRIVATE(I,TMP1,TMP2)

DO I=1,1000000

TMP1 = ( A(I) ** 2 ) + ( B(I) ** 2 )

TMP2 = SQRT(TMP1)

B(I) = TMP2

ENDDO

C$OMP END PARALLEL DO

The iteration variable I also must be a thread-private variable. As the di�erent threads increment their way
through their particular subset of the arrays, they don't want to be modifying a global value for I.

There are a number of other options as to how data will be operated on across the threads. This
summarizes some of the other data semantics available:

Firstprivate: These are thread-private variables that take an initial value from the global variable of the
same name immediately before the loop begins executing.

Lastprivate: These are thread-private variables except that the thread that executes the last iteration of
the loop copies its value back into the global variable of the same name.
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Reduction: This indicates that a variable participates in a reduction operation that can be safely done in
parallel. This is done by forming a partial reduction using a local variable in each thread and then
combining the partial results at the end of the loop.

Each vendor may have di�erent terms to indicate these data semantics, but most support all of these common
semantics. Figure 6.6 (Figure 11-6: Variables during a parallel region) shows how the di�erent types of data
semantics operate.

Now that we have the data environment set up for the loop, the only remaining problem that must be
solved is which threads will perform which iterations. It turns out that this is not a trivial task, and a wrong
choice can have a signi�cant negative impact on our overall performance.

6.3.1.2.3 Iteration scheduling

There are two basic techniques (along with a few variations) for dividing the iterations in a loop between
threads. We can look at two extreme examples to get an idea of how this works:

C VECTOR ADD

DO IPROB=1,10000

A(IPROB) = B(IPROB) + C(IPROB)

ENDDO

C PARTICLE TRACKING

DO IPROB=1,10000

RANVAL = RAND(IPROB)

CALL ITERATE_ENERGY(RANVAL) ENDDO

ENDDO
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Figure 11-6: Variables during a parallel region

Figure 6.6

In both loops, all the computations are independent, so if there were 10,000 processors, each processor
could execute a single iteration. In the vector-add example, each iteration would be relatively short, and the
execution time would be relatively constant from iteration to iteration. In the particle tracking example, each
iteration chooses a random number for an initial particle position and iterates to �nd the minimum energy.
Each iteration takes a relatively long time to complete, and there will be a wide variation of completion
times from iteration to iteration.

These two examples are e�ectively the ends of a continuous spectrum of the iteration scheduling challenges
facing the FORTRAN parallel runtime environment:
Static
At the beginning of a parallel loop, each thread takes a �xed continuous portion of iterations of the loop
based on the number of threads executing the loop.
Dynamic
With dynamic scheduling, each thread processes a chunk of data and when it has completed processing, a
new chunk is processed. The chunk size can be varied by the programmer, but is �xed for the duration of
the loop.

These two example loops can show how these iteration scheduling approaches might operate when ex-
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ecuting with four threads. In the vector-add loop, static scheduling would distribute iterations 1�2500 to
Thread 0, 2501�5000 to Thread 1, 5001�7500 to Thread 2, and 7501�10000 to Thread 3. In Figure 6.7
(Figure 11-7: Iteration assignment for static scheduling), the mapping of iterations to threads is shown for
the static scheduling option.

Figure 11-7: Iteration assignment for static scheduling

Figure 6.7

Since the loop body (a single statement) is short with a consistent execution time, static scheduling
should result in roughly the same amount of overall work (and time if you assume a dedicated CPU for each
thread) assigned to each thread per loop execution.

An advantage of static scheduling may occur if the entire loop is executed repeatedly. If the same
iterations are assigned to the same threads that happen to be running on the same processors, the cache
might actually contain the values for A, B, and C from the previous loop execution.9 The runtime pseudo-code
for static scheduling in the �rst loop might look as follows:

C VECTOR ADD - Static Scheduled

ISTART = (THREAD_NUMBER * 2500 ) + 1

IEND = ISTART + 2499

DO ILOCAL = ISTART,IEND

A(ILOCAL) = B(ILOCAL) + C(ILOCAL)

ENDDO

It's not always a good strategy to use the static approach of giving a �xed number of iterations to each
thread. If this is used in the second loop example, long and varying iteration times would result in poor load

9The operating system and runtime library actually go to some lengths to try to make this happen. This is another reason
not to have more threads than available processors, which causes unnecessary context switching.
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balancing. A better approach is to have each processor simply get the next value for IPROB each time at the
top of the loop.

That approach is called dynamic scheduling, and it can adapt to widely varying iteration times. In
Figure 6.8 (Figure 11-8: Iteration assignment in dynamic scheduling), the mapping of iterations to processors
using dynamic scheduling is shown. As soon as a processor �nishes one iteration, it processes the next
available iteration in order.

Figure 11-8: Iteration assignment in dynamic scheduling

Figure 6.8

If a loop is executed repeatedly, the assignment of iterations to threads may vary due to subtle timing
issues that a�ect threads. The pseudo-code for the dynamic scheduled loop at runtime is as follows:

C PARTICLE TRACKING - Dynamic Scheduled

IPROB = 0

WHILE (IPROB <= 10000 )

BEGIN_CRITICAL_SECTION

IPROB = IPROB + 1

ILOCAL = IPROB

END_CRITICAL_SECTION

RANVAL = RAND(ILOCAL)

CALL ITERATE_ENERGY(RANVAL)

ENDWHILE

ILOCAL is used so that each thread knows which iteration is currently processing. The IPROB value is altered
by the next thread executing the critical section.

While the dynamic iteration scheduling approach works well for this particular loop, there is a signi�cant
negative performance impact if the programmer were to use the wrong approach for a loop. For example, if
the dynamic approach were used for the vector-add loop, the time to process the critical section to determine
which iteration to process may be larger than the time to actually process the iteration. Furthermore, any
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cache a�nity of the data would be e�ectively lost because of the virtually random assignment of iterations
to processors.

In between these two approaches are a wide variety of techniques that operate on a chunk of iterations.
In some techniques the chunk size is �xed, and in others it varies during the execution of the loop. In this
approach, a chunk of iterations are grabbed each time the critical section is executed. This reduces the
scheduling overhead, but can have problems in producing a balanced execution time for each processor. The
runtime is modi�ed as follows to perform the particle tracking loop example using a chunk size of 100:

IPROB = 1

CHUNKSIZE = 100

WHILE (IPROB <= 10000 )

BEGIN_CRITICAL_SECTION

ISTART = IPROB

IPROB = IPROB + CHUNKSIZE

END_CRITICAL_SECTION

DO ILOCAL = ISTART,ISTART+CHUNKSIZE-1

RANVAL = RAND(ILOCAL)

CALL ITERATE_ENERGY(RANVAL)

ENDDO

ENDWHILE

The choice of chunk size is a compromise between overhead and termination imbalance. Typically the
programmer must get involved through directives in order to control chunk size.

Part of the challenge of iteration distribution is to balance the cost (or existence) of the critical section
against the amount of work done per invocation of the critical section. In the ideal world, the critical section
would be free, and all scheduling would be done dynamically. Parallel/vector supercomputers with hardware
assistance for load balancing can nearly achieve the ideal using dynamic approaches with relatively small
chunk size.

Because the choice of loop iteration approach is so important, the compiler relies on directives from the
programmer to specify which approach to use. The following example shows how we can request the proper
iteration scheduling for our loops:

C VECTOR ADD

C$OMP PARALLEL DO PRIVATE(IPROB) SHARED(A,B,C) SCHEDULE(STATIC)

DO IPROB=1,10000

A(IPROB) = B(IPROB) + C(IPROB)

ENDDO

C$OMP END PARALLEL DO

C PARTICLE TRACKING

C$OMP PARALLEL DO PRIVATE(IPROB,RANVAL) SCHEDULE(DYNAMIC)

DO IPROB=1,10000

RANVAL = RAND(IPROB)

CALL ITERATE_ENERGY(RANVAL)

ENDDO

C$OMP END PARALLEL DO
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6.4 Closing Notes10

6.4.1 Closing Notes

Using data �ow analysis and other techniques, modern compilers can peer through the clutter that we
programmers innocently put into our code and see the patterns of the actual computations. In the �eld of
high performance computing, having great parallel hardware and a lousy automatic parallelizing compiler
generally results in no sales. Too many of the benchmark rules allow only a few compiler options to be set.

Physicists and chemists are interested in physics and chemistry, not computer science. If it takes 1 hour to
execute a chemistry code without modi�cations and after six weeks of modi�cations the same code executes
in 20 minutes, which is better? Well from a chemist's point of view, one took an hour, and the other took
1008 hours and 20 minutes, so the answer is obvious.11 Although if the program were going to be executed
thousands of times, the tuning might be a win for the programmer. The answer is even more obvious if it
again takes six weeks to tune the program every time you make a modi�cation to the program.

In some ways, assertions have become less popular than directives. This is due to two factors: (1)
compilers are getting better at detecting parallelism even if they have to rewrite some code to do so, and
(2) there are two kinds of programmers: those who know exactly how to parallelize their codes and those
who turn on the �safe� auto-parallelize �ags on their codes. Assertions fall in the middle ground, somewhere
between where the programmer does not want to control all the details but kind of feels that the loop can
be parallelized.

You can get online documentation of the OpenMP syntax used in these examples at www.openmp.org12

.

6.5 Exercises13

6.5.1 Exercises

Exercise 6.1
Take a static, highly parallel program with a relative large inner loop. Compile the application for
parallel execution. Execute the application increasing the threads. Examine the behavior when the
number of threads exceed the available processors. See if di�erent iteration scheduling approaches
make a di�erence.

Exercise 6.2
Take the following loop and execute with several di�erent iteration scheduling choices. For chunk-
based scheduling, use a large chunk size, perhaps 100,000. See if any approach performs better than
static scheduling:

DO I=1,4000000

A(I) = B(I) * 2.34

ENDDO

Exercise 6.3
Execute the following loop for a range of values for N from 1 to 16 million:

10This content is available online at <http://cnx.org/content/m32820/1.1/>.
11On the other hand, if the person is a computer scientist, improving the performance might result in anything from a poster

session at a conference to a journal article! This makes for lots of intra-departmental masters degree projects.
12http://cnx.org/content/m32820/latest/www.openmp.org
13This content is available online at <http://cnx.org/content/m32819/1.1/>.
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DO I=1,N

A(I) = B(I) * 2.34

ENDDO

Run the loop in a single processor. Then force the loop to run in parallel. At what point do you
get better performance on multiple processors? Do the number of threads a�ect your observations?

Exercise 6.4
Use an explicit parallelization directive to execute the following loop in parallel with a chunk size
of 1:

J = 0

C$OMP PARALLEL DO PRIVATE(I) SHARED(J) SCHEDULE(DYNAMIC)

DO I=1,1000000

J = J + 1

ENDDO

PRINT *, J

C$OMP END PARALLEL DO

Execute the loop with a varying number of threads, including one. Also compile and execute the
code in serial. Compare the output and execution times. What do the results tell you about cache
coherency? About the cost of moving data from one cache to another, and about critical section
costs?
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